64.14.6 problem 6

Internal problem ID [13494]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number : 6
Date solved : Monday, March 31, 2025 at 07:59:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-x y^{\prime }+\left (3 x -2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 52
Order:=6; 
ode:=diff(diff(y(x),x),x)-x*diff(y(x),x)+(3*x-2)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+x^{2}-\frac {1}{2} x^{3}+\frac {1}{3} x^{4}-\frac {11}{40} x^{5}\right ) y \left (0\right )+\left (x +\frac {1}{2} x^{3}-\frac {1}{4} x^{4}+\frac {1}{8} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 59
ode=D[y[x],{x,2}]-x*D[y[x],x]+(3*x-2)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{8}-\frac {x^4}{4}+\frac {x^3}{2}+x\right )+c_1 \left (-\frac {11 x^5}{40}+\frac {x^4}{3}-\frac {x^3}{2}+x^2+1\right ) \]
Sympy. Time used: 0.769 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + (3*x - 2)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{3} - \frac {x^{3}}{2} + x^{2} + 1\right ) + C_{1} x \left (- \frac {x^{3}}{4} + \frac {x^{2}}{2} + 1\right ) + O\left (x^{6}\right ) \]