64.14.3 problem 3

Internal problem ID [13491]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 6, Series solutions of linear differential equations. Section 6.1. Exercises page 232
Problem number : 3
Date solved : Monday, March 31, 2025 at 07:59:32 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}+1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 39
Order:=6; 
ode:=diff(diff(y(x),x),x)+x*diff(y(x),x)+(2*x^2+1)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}-\frac {1}{24} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{3} x^{3}-\frac {1}{30} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 42
ode=D[y[x],{x,2}]+x*D[y[x],x]+(2*x^2+1)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (-\frac {x^5}{30}-\frac {x^3}{3}+x\right )+c_1 \left (-\frac {x^4}{24}-\frac {x^2}{2}+1\right ) \]
Sympy. Time used: 0.751 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + (2*x**2 + 1)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = - \frac {x^{5} r{\left (3 \right )}}{5} + C_{2} \left (- \frac {x^{4}}{24} - \frac {x^{2}}{2} + 1\right ) + C_{1} x \left (1 - \frac {x^{4}}{10}\right ) + O\left (x^{6}\right ) \]