Internal
problem
ID
[13125]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
3,
Laplace
transform.
Section
3.2.1
Initial
value
problems.
Exercises
page
156
Problem
number
:
14
Date
solved
:
Monday, March 31, 2025 at 07:34:54 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(x(t),t) = -x(t)+Heaviside(t-1)-Heaviside(t-2); ic:=x(0) = 1; dsolve([ode,ic],x(t),method='laplace');
ode=D[x[t],t]==-x[t]+UnitStep[t-1]-UnitStep[t-2]; ic={x[0]==1}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(x(t) + Heaviside(t - 2) - Heaviside(t - 1) + Derivative(x(t), t),0) ics = {x(0): 1} dsolve(ode,func=x(t),ics=ics)