63.14.1 problem 1(a)

Internal problem ID [13106]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130
Problem number : 1(a)
Date solved : Monday, March 31, 2025 at 07:34:28 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} x^{\prime \prime \prime }+x^{\prime }&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=diff(diff(diff(x(t),t),t),t)+diff(x(t),t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x = c_1 +c_2 \sin \left (t \right )+c_3 \cos \left (t \right ) \]
Mathematica. Time used: 60.019 (sec). Leaf size: 28
ode=D[x[t],{t,3}]+D[x[t],t]==0; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\[ x(t)\to \int _1^t(c_1 \cos (K[1])+c_2 \sin (K[1]))dK[1]+c_3 \]
Sympy. Time used: 0.116 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(Derivative(x(t), t) + Derivative(x(t), (t, 3)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} + C_{2} \sin {\left (t \right )} + C_{3} \cos {\left (t \right )} \]