63.5.15 problem 3(c)

Internal problem ID [13018]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 1, First order differential equations. Section 1.4.1. Integrating factors. Exercises page 41
Problem number : 3(c)
Date solved : Monday, March 31, 2025 at 07:31:00 AM
CAS classification : [_linear]

\begin{align*} R^{\prime }+\frac {R}{t}&=\frac {2}{t^{2}+1} \end{align*}

With initial conditions

\begin{align*} R \left (1\right )&=3 \ln \left (2\right ) \end{align*}

Maple. Time used: 0.038 (sec). Leaf size: 19
ode:=diff(R(t),t)+R(t)/t = 2/(t^2+1); 
ic:=R(1) = 3*ln(2); 
dsolve([ode,ic],R(t), singsol=all);
 
\[ R = \frac {\ln \left (t^{2}+1\right )+2 \ln \left (2\right )}{t} \]
Mathematica. Time used: 0.033 (sec). Leaf size: 17
ode=D[ R[t],t]+R[t]/t==2/(1+t^2); 
ic={R[1]==Log[8]}; 
DSolve[{ode,ic},R[t],t,IncludeSingularSolutions->True]
 
\[ R(t)\to \frac {\log \left (4 t^2+4\right )}{t} \]
Sympy. Time used: 0.254 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
R = Function("R") 
ode = Eq(Derivative(R(t), t) - 2/(t**2 + 1) + R(t)/t,0) 
ics = {R(1): 3*log(2)} 
dsolve(ode,func=R(t),ics=ics)
 
\[ R{\left (t \right )} = \frac {\log {\left (t^{2} + 1 \right )} + 2 \log {\left (2 \right )}}{t} \]