62.23.2 problem Ex 3

Internal problem ID [12857]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter VII, Linear differential equations with constant coefficients. Article 45. Roots of auxiliary equation complex. Page 95
Problem number : Ex 3
Date solved : Monday, March 31, 2025 at 07:22:53 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 32
ode:=diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)+diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )+c_3 \,{\mathrm e}^{\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]
Mathematica. Time used: 60.134 (sec). Leaf size: 55
ode=D[y[x],{x,3}]-D[y[x],{x,2}]+D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \int _1^xe^{\frac {K[1]}{2}} \left (c_1 \cos \left (\frac {1}{2} \sqrt {3} K[1]\right )+c_2 \sin \left (\frac {1}{2} \sqrt {3} K[1]\right )\right )dK[1]+c_3 \]
Sympy. Time used: 0.145 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \left (C_{2} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{3} \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{\frac {x}{2}} \]