62.3.5 problem Ex 5

Internal problem ID [12740]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 10. Homogeneous equations. Page 15
Problem number : Ex 5
Date solved : Monday, March 31, 2025 at 07:01:11 AM
CAS classification : [_separable]

\begin{align*} y^{3}+x^{3} y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 30
ode:=y(x)^3+x^3*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x}{\sqrt {c_1 \,x^{2}-1}} \\ y &= -\frac {x}{\sqrt {c_1 \,x^{2}-1}} \\ \end{align*}
Mathematica. Time used: 0.446 (sec). Leaf size: 45
ode=y[x]^3+x^3*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {x}{\sqrt {-1-2 c_1 x^2}} \\ y(x)\to \frac {x}{\sqrt {-1-2 c_1 x^2}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.533 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), x) + y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - x \sqrt {- \frac {1}{C_{1} x^{2} + 1}}, \ y{\left (x \right )} = x \sqrt {- \frac {1}{C_{1} x^{2} + 1}}\right ] \]