61.4.2 problem 23

Internal problem ID [12028]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number : 23
Date solved : Sunday, March 30, 2025 at 10:19:23 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Riccati]

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 64
ode:=diff(y(x),x) = a*exp(lambda*x)*y(x)^2+b*exp(-lambda*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\left (\lambda ^{2}-\tan \left (\frac {\sqrt {4 \lambda ^{2} a b -\lambda ^{4}}\, \left (\lambda x +c_1 \right )}{2 \lambda ^{2}}\right ) \sqrt {4 \lambda ^{2} a b -\lambda ^{4}}\right ) {\mathrm e}^{-\lambda x}}{2 a \lambda } \]
Mathematica. Time used: 0.365 (sec). Leaf size: 123
ode=D[y[x],x]==a*Exp[\[Lambda]*x]*y[x]^2+b*Exp[-\[Lambda]*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {e^{\lambda (-x)} \left (-\sqrt {\lambda ^2-4 a b}+\frac {2}{\frac {1}{\sqrt {\lambda ^2-4 a b}}+c_1 e^{x \sqrt {\lambda ^2-4 a b}}}-\lambda \right )}{2 a} \\ y(x)\to \frac {e^{\lambda (-x)} \left (4 a b-\lambda \left (\sqrt {\lambda ^2-4 a b}+\lambda \right )\right )}{2 a \sqrt {\lambda ^2-4 a b}} \\ \end{align*}
Sympy. Time used: 7.055 (sec). Leaf size: 264
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(-a*y(x)**2*exp(lambda_*x) - b*exp(-lambda_*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\left (4 a b \sqrt {- \frac {1}{4 a b - \lambda _{}^{2}}} e^{\frac {\sqrt {- \frac {1}{4 a b - \lambda _{}^{2}}} \left (4 C_{1} a b - \lambda _{} \left (C_{1} \lambda _{} + 4 a b x - \lambda _{}^{2} x\right )\right )}{\lambda _{}}} + 4 a b \sqrt {- \frac {1}{4 a b - \lambda _{}^{2}}} - \lambda _{}^{2} \sqrt {- \frac {1}{4 a b - \lambda _{}^{2}}} e^{\frac {\sqrt {- \frac {1}{4 a b - \lambda _{}^{2}}} \left (4 C_{1} a b - \lambda _{} \left (C_{1} \lambda _{} + 4 a b x - \lambda _{}^{2} x\right )\right )}{\lambda _{}}} - \lambda _{}^{2} \sqrt {- \frac {1}{4 a b - \lambda _{}^{2}}} - \lambda _{} e^{\frac {\sqrt {- \frac {1}{4 a b - \lambda _{}^{2}}} \left (4 C_{1} a b - \lambda _{} \left (C_{1} \lambda _{} + 4 a b x - \lambda _{}^{2} x\right )\right )}{\lambda _{}}} + \lambda _{}\right ) e^{- \lambda _{} x}}{2 a \left (e^{\frac {\sqrt {- \frac {1}{4 a b - \lambda _{}^{2}}} \left (4 C_{1} a b - \lambda _{} \left (C_{1} \lambda _{} + 4 a b x - \lambda _{}^{2} x\right )\right )}{\lambda _{}}} - 1\right )} \]