60.2.263 problem 840
Internal
problem
ID
[10837]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
840
Date
solved
:
Sunday, March 30, 2025 at 07:11:48 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
\begin{align*} y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x +x^{3}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \end{align*}
✓ Maple. Time used: 0.008 (sec). Leaf size: 21
ode:=diff(y(x),x) = (exp(-y(x)/x)*y(x)+exp(-y(x)/x)*x+x^3)*exp(y(x)/x)/x;
dsolve(ode,y(x), singsol=all);
\[
y = \left (\ln \left (3\right )+\ln \left (\frac {x}{-x^{3}+c_1}\right )\right ) x
\]
✓ Mathematica. Time used: 0.403 (sec). Leaf size: 387
ode=D[y[x],x] == (E^(y[x]/x)*(x/E^(y[x]/x) + x^3 + y[x]/E^(y[x]/x)))/x;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
\text {Solve}\left [\int _1^{y(x)}-\frac {e^{\frac {K[2]}{x}} \int _1^x\left (\frac {e^{\frac {K[2]}{K[1]}} (2 K[1]-K[2])}{3 K[1] \left (e^{\frac {K[2]}{K[1]}} K[1]^2+3\right )}-\frac {e^{\frac {2 K[2]}{K[1]}} K[1] (2 K[1]-K[2])}{3 \left (e^{\frac {K[2]}{K[1]}} K[1]^2+3\right )^2}-\frac {e^{\frac {K[2]}{K[1]}}}{3 \left (e^{\frac {K[2]}{K[1]}} K[1]^2+3\right )}+\frac {1}{3 K[1]^2}\right )dK[1] x^3+3 \int _1^x\left (\frac {e^{\frac {K[2]}{K[1]}} (2 K[1]-K[2])}{3 K[1] \left (e^{\frac {K[2]}{K[1]}} K[1]^2+3\right )}-\frac {e^{\frac {2 K[2]}{K[1]}} K[1] (2 K[1]-K[2])}{3 \left (e^{\frac {K[2]}{K[1]}} K[1]^2+3\right )^2}-\frac {e^{\frac {K[2]}{K[1]}}}{3 \left (e^{\frac {K[2]}{K[1]}} K[1]^2+3\right )}+\frac {1}{3 K[1]^2}\right )dK[1] x+1}{x \left (e^{\frac {K[2]}{x}} x^2+3\right )}dK[2]+\int _1^x\left (\frac {e^{\frac {y(x)}{K[1]}} (2 K[1]-y(x))}{3 \left (e^{\frac {y(x)}{K[1]}} K[1]^2+3\right )}+\frac {y(x)}{3 K[1]^2}+\frac {1}{3 K[1]}\right )dK[1]=c_1,y(x)\right ]
\]
✓ Sympy. Time used: 2.675 (sec). Leaf size: 29
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(Derivative(y(x), x) - (x**3 + x*exp(-y(x)/x) + y(x)*exp(-y(x)/x))*exp(y(x)/x)/x,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
C_{1} + \frac {\log {\left (x \right )}}{3} + \frac {\log {\left (x^{2} e^{\frac {y{\left (x \right )}}{x}} + 3 \right )}}{3} - \frac {y{\left (x \right )}}{3 x} = 0
\]