60.2.198 problem 774

Internal problem ID [10772]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 774
Date solved : Sunday, March 30, 2025 at 06:36:21 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {-4 x y-x^{3}-2 a \,x^{2}-4 x +8}{8 y+2 x^{2}+4 a x +8} \end{align*}

Maple. Time used: 0.111 (sec). Leaf size: 47
ode:=diff(y(x),x) = (-4*x*y(x)-x^3-2*a*x^2-4*x+8)/(8*y(x)+2*x^2+4*a*x+8); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-2 a^{2} x -a \,x^{2}-8 \operatorname {LambertW}\left (-\frac {{\mathrm e}^{-1+\frac {\left (c_1 -x \right ) a^{2}}{4}-\frac {a}{2}}}{2}\right )-4 a -8}{4 a} \]
Mathematica. Time used: 1.125 (sec). Leaf size: 72
ode=D[y[x],x] == (8 - 4*x - 2*a*x^2 - x^3 - 4*x*y[x])/(8 + 4*a*x + 2*x^2 + 8*y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {8 W\left (-e^{-\frac {a^2 x}{4}-1+c_1}\right )+2 a^2 x+a \left (x^2+4\right )+8}{4 a} \\ y(x)\to -\frac {2 a^2 x+a \left (x^2+4\right )+8}{4 a} \\ \end{align*}
Sympy. Time used: 46.080 (sec). Leaf size: 437
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (-2*a*x**2 - x**3 - 4*x*y(x) - 4*x + 8)/(4*a*x + 2*x**2 + 8*y(x) + 8),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {- \frac {a^{2} x}{2} - \frac {a x^{2}}{4} - a - 2 W\left (- \frac {\sqrt [8]{e^{- 2 a \left (C_{1} a + a x + 2\right )}}}{2 e}\right ) - 2}{a}, \ y{\left (x \right )} = \frac {- \frac {a^{2} x}{2} - \frac {a x^{2}}{4} - a - 2 W\left (\frac {\sqrt [8]{e^{- 2 a \left (C_{1} a + a x + 2\right )}}}{2 e}\right ) - 2}{a}, \ y{\left (x \right )} = \frac {- \frac {a^{2} x}{2} - \frac {a x^{2}}{4} - a - 2 W\left (- \frac {i \sqrt [8]{e^{- 2 a \left (C_{1} a + a x + 2\right )}}}{2 e}\right ) - 2}{a}, \ y{\left (x \right )} = \frac {- \frac {a^{2} x}{2} - \frac {a x^{2}}{4} - a - 2 W\left (\frac {i \sqrt [8]{e^{- 2 a \left (C_{1} a + a x + 2\right )}}}{2 e}\right ) - 2}{a}, \ y{\left (x \right )} = \frac {- \frac {a^{2} x}{2} - \frac {a x^{2}}{4} - a - 2 W\left (\frac {\sqrt {2} \left (-1 - i\right ) \sqrt [8]{e^{- 2 a \left (C_{1} a + a x + 2\right )}}}{4 e}\right ) - 2}{a}, \ y{\left (x \right )} = \frac {- \frac {a^{2} x}{2} - \frac {a x^{2}}{4} - a - 2 W\left (\frac {\sqrt {2} \left (-1 + i\right ) \sqrt [8]{e^{- 2 a \left (C_{1} a + a x + 2\right )}}}{4 e}\right ) - 2}{a}, \ y{\left (x \right )} = \frac {- \frac {a^{2} x}{2} - \frac {a x^{2}}{4} - a - 2 W\left (\frac {\sqrt {2} \left (1 - i\right ) \sqrt [8]{e^{- 2 a \left (C_{1} a + a x + 2\right )}}}{4 e}\right ) - 2}{a}, \ y{\left (x \right )} = \frac {- \frac {a^{2} x}{2} - \frac {a x^{2}}{4} - a - 2 W\left (\frac {\sqrt {2} \left (1 + i\right ) \sqrt [8]{e^{- 2 a \left (C_{1} a + a x + 2\right )}}}{4 e}\right ) - 2}{a}\right ] \]