60.2.195 problem 771

Internal problem ID [10769]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 771
Date solved : Sunday, March 30, 2025 at 06:36:09 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {-4 y a x -a^{2} x^{3}-2 a \,x^{2} b -4 a x +8}{8 y+2 a \,x^{2}+4 b x +8} \end{align*}

Maple. Time used: 0.113 (sec). Leaf size: 82
ode:=diff(y(x),x) = (-4*y(x)*a*x-a^2*x^3-2*a*x^2*b-4*a*x+8)/(8*y(x)+2*a*x^2+4*b*x+8); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-a \,x^{2} b -2 b^{2} x +4 \,{\mathrm e}^{\frac {-4 \operatorname {LambertW}\left (-\frac {{\mathrm e}^{-\frac {b^{2} x}{4}-\frac {b^{2} c_1}{2 a}-\frac {b}{2}-1}}{2}\right ) a +\left (-b^{2} x -2 b -4\right ) a -2 c_1 \,b^{2}}{4 a}}-4 b -8}{4 b} \]
Mathematica. Time used: 2.577 (sec). Leaf size: 76
ode=D[y[x],x] == (8 - 4*a*x - 2*a*b*x^2 - a^2*x^3 - 4*a*x*y[x])/(8 + 4*b*x + 2*a*x^2 + 8*y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {a b x^2+8 W\left (-e^{-\frac {b^2 x}{4}-1+c_1}\right )+2 b^2 x+4 b+8}{4 b} \\ y(x)\to -\frac {a b x^2+2 b^2 x+4 b+8}{4 b} \\ \end{align*}
Sympy. Time used: 46.746 (sec). Leaf size: 450
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (-a**2*x**3 - 2*a*b*x**2 - 4*a*x*y(x) - 4*a*x + 8)/(2*a*x**2 + 4*b*x + 8*y(x) + 8),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {- \frac {a b x^{2}}{4} - \frac {b^{2} x}{2} - b - 2 W\left (- \frac {\sqrt [8]{e^{- 2 b \left (C_{1} b + b x + 2\right )}}}{2 e}\right ) - 2}{b}, \ y{\left (x \right )} = \frac {- \frac {a b x^{2}}{4} - \frac {b^{2} x}{2} - b - 2 W\left (\frac {\sqrt [8]{e^{- 2 b \left (C_{1} b + b x + 2\right )}}}{2 e}\right ) - 2}{b}, \ y{\left (x \right )} = \frac {- \frac {a b x^{2}}{4} - \frac {b^{2} x}{2} - b - 2 W\left (- \frac {i \sqrt [8]{e^{- 2 b \left (C_{1} b + b x + 2\right )}}}{2 e}\right ) - 2}{b}, \ y{\left (x \right )} = \frac {- \frac {a b x^{2}}{4} - \frac {b^{2} x}{2} - b - 2 W\left (\frac {i \sqrt [8]{e^{- 2 b \left (C_{1} b + b x + 2\right )}}}{2 e}\right ) - 2}{b}, \ y{\left (x \right )} = \frac {- \frac {a b x^{2}}{4} - \frac {b^{2} x}{2} - b - 2 W\left (\frac {\sqrt {2} \left (-1 - i\right ) \sqrt [8]{e^{- 2 b \left (C_{1} b + b x + 2\right )}}}{4 e}\right ) - 2}{b}, \ y{\left (x \right )} = \frac {- \frac {a b x^{2}}{4} - \frac {b^{2} x}{2} - b - 2 W\left (\frac {\sqrt {2} \left (-1 + i\right ) \sqrt [8]{e^{- 2 b \left (C_{1} b + b x + 2\right )}}}{4 e}\right ) - 2}{b}, \ y{\left (x \right )} = \frac {- \frac {a b x^{2}}{4} - \frac {b^{2} x}{2} - b - 2 W\left (\frac {\sqrt {2} \left (1 - i\right ) \sqrt [8]{e^{- 2 b \left (C_{1} b + b x + 2\right )}}}{4 e}\right ) - 2}{b}, \ y{\left (x \right )} = \frac {- \frac {a b x^{2}}{4} - \frac {b^{2} x}{2} - b - 2 W\left (\frac {\sqrt {2} \left (1 + i\right ) \sqrt [8]{e^{- 2 b \left (C_{1} b + b x + 2\right )}}}{4 e}\right ) - 2}{b}\right ] \]