60.2.189 problem 765
Internal
problem
ID
[10763]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
765
Date
solved
:
Sunday, March 30, 2025 at 06:35:34 PM
CAS
classification
:
[_Bernoulli]
\begin{align*} y^{\prime }&=\frac {y \left (-1-\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x y\right )}{x} \end{align*}
✓ Maple. Time used: 0.065 (sec). Leaf size: 50
ode:=diff(y(x),x) = y(x)*(-1-ln((x-1)*(1+x)/x)+ln((x-1)*(1+x)/x)*x*y(x))/x;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {1}{x \left (1+c_1 \left (x +1\right )^{-\ln \left (x \right )} \left (\frac {x^{2}-1}{x}\right )^{\ln \left (x \right )} {\mathrm e}^{\operatorname {dilog}\left (x \right )+\frac {\ln \left (x \right )^{2}}{2}-\operatorname {dilog}\left (x +1\right )}\right )}
\]
✓ Mathematica. Time used: 0.734 (sec). Leaf size: 240
ode=D[y[x],x] == (y[x]*(-1 - Log[((-1 + x)*(1 + x))/x] + x*Log[((-1 + x)*(1 + x))/x]*y[x]))/x;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \frac {e^{\operatorname {PolyLog}(2,-x)-\operatorname {PolyLog}(2,1-x)} x^{-\frac {\log (x)}{2}+\log (x+1)-\log \left (x-\frac {1}{x}\right )-1}}{-\int _1^xe^{\operatorname {PolyLog}(2,-K[1])-\operatorname {PolyLog}(2,1-K[1])} K[1]^{-\frac {1}{2} \log (K[1])+\log (K[1]+1)-\log \left (K[1]-\frac {1}{K[1]}\right )-1} \log \left (K[1]-\frac {1}{K[1]}\right )dK[1]+c_1} \\
y(x)\to 0 \\
y(x)\to -\frac {e^{\operatorname {PolyLog}(2,-x)-\operatorname {PolyLog}(2,1-x)} x^{-\frac {\log (x)}{2}+\log (x+1)-\log \left (x-\frac {1}{x}\right )-1}}{\int _1^xe^{\operatorname {PolyLog}(2,-K[1])-\operatorname {PolyLog}(2,1-K[1])} K[1]^{-\frac {1}{2} \log (K[1])+\log (K[1]+1)-\log \left (K[1]-\frac {1}{K[1]}\right )-1} \log \left (K[1]-\frac {1}{K[1]}\right )dK[1]} \\
\end{align*}
✓ Sympy. Time used: 45.995 (sec). Leaf size: 32
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(Derivative(y(x), x) - (x*y(x)*log((x - 1)*(x + 1)/x) - log((x - 1)*(x + 1)/x) - 1)*y(x)/x,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = \frac {e^{- \int \frac {\log {\left (x - \frac {1}{x} \right )}}{x}\, dx}}{x \left (C_{1} + e^{- \int \frac {\log {\left (x - \frac {1}{x} \right )}}{x}\, dx}\right )}
\]