Internal
problem
ID
[9171]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
48
Date
solved
:
Sunday, March 30, 2025 at 02:24:46 PM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=diff(y(x),x) = y(x)^(1/3); ic:=y(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==y[x]^(1/3); ic={y[0]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x)**(1/3) + Derivative(y(x), x),0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)