6.174 Problems 17301 to 17400

Table 6.347: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17301

\[ {} \ln \left (t \right ) y+\left (t -3\right ) y^{\prime } = 2 t \]

17302

\[ {} y+\left (-4+t \right ) t y^{\prime } = 0 \]

17303

\[ {} \tan \left (t \right ) y+y^{\prime } = \sin \left (t \right ) \]

17304

\[ {} 2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]

17305

\[ {} 2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]

17306

\[ {} y+\ln \left (t \right ) y^{\prime } = \cot \left (t \right ) \]

17307

\[ {} y^{\prime } = \frac {t -y}{2 t +5 y} \]

17308

\[ {} y^{\prime } = \sqrt {1-t^{2}-y^{2}} \]

17309

\[ {} y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \]

17310

\[ {} y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}} \]

17311

\[ {} y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

17312

\[ {} y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

17313

\[ {} y^{\prime } = y^{{1}/{3}} \]

17314

\[ {} y^{\prime } = -\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2} \]

17315

\[ {} y^{\prime } = -\frac {4 t}{y} \]

17316

\[ {} y^{\prime } = 2 t y^{2} \]

17317

\[ {} y^{3}+y^{\prime } = 0 \]

17318

\[ {} y^{\prime } = \frac {t^{2}}{\left (t^{3}+1\right ) y} \]

17319

\[ {} y^{\prime } = t \left (3-y\right ) y \]

17320

\[ {} y^{\prime } = y \left (3-t y\right ) \]

17321

\[ {} y^{\prime } = -y \left (3-t y\right ) \]

17322

\[ {} y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \]

17323

\[ {} y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y = 0 \]

17324

\[ {} 3+2 x +\left (-2+2 y\right ) y^{\prime } = 0 \]

17325

\[ {} 2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

17326

\[ {} 2+3 x^{2}-2 x y+\left (3-x^{2}+6 y^{2}\right ) y^{\prime } = 0 \]

17327

\[ {} 2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

17328

\[ {} y^{\prime } = -\frac {4 x +2 y}{2 x +3 y} \]

17329

\[ {} y^{\prime } = -\frac {4 x -2 y}{2 x -3 y} \]

17330

\[ {} {\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

17331

\[ {} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

17332

\[ {} 2 x -2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+{\mathrm e}^{x y} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{x y} x \cos \left (2 x \right )\right ) y^{\prime } = 0 \]

17333

\[ {} \frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

17334

\[ {} x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

17335

\[ {} \frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

17336

\[ {} 2 x -y+\left (2 y-x \right ) y^{\prime } = 0 \]

17337

\[ {} 9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime } = 0 \]

17338

\[ {} x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

17339

\[ {} \frac {\sin \left (y\right )}{y}-2 \,{\mathrm e}^{-x} \sin \left (x \right )+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y} = 0 \]

17340

\[ {} y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime } = 0 \]

17341

\[ {} \left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

17342

\[ {} 2 x y+3 x^{2} y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

17343

\[ {} y^{\prime } = -1+{\mathrm e}^{2 x}+y \]

17344

\[ {} \frac {y^{\prime }}{-\sin \left (y\right )+\frac {x}{y}} = 0 \]

17345

\[ {} y+\left (-{\mathrm e}^{-2 y}+2 x y\right ) y^{\prime } = 0 \]

17346

\[ {} {\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime } = 0 \]

17347

\[ {} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

17348

\[ {} 3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

17349

\[ {} 3 x y+y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

17350

\[ {} y y^{\prime } = 1+x \]

17351

\[ {} \left (1+y^{4}\right ) y^{\prime } = x^{4}+1 \]

17352

\[ {} \frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{y^{3}+3 x^{2} y} = 1 \]

17353

\[ {} x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

17354

\[ {} y+\sqrt {-y^{2}+x^{2}} = x y^{\prime } \]

17355

\[ {} x y y^{\prime } = \left (x +y\right )^{2} \]

17356

\[ {} y^{\prime } = \frac {4 y-7 x}{5 x -y} \]

17357

\[ {} x y^{\prime }-4 \sqrt {y^{2}-x^{2}} = y \]

17358

\[ {} y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}} \]

17359

\[ {} \left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

17360

\[ {} x y y^{\prime } = x^{2}+y^{2} \]

17361

\[ {} y^{\prime } = \frac {x +y}{x -y} \]

17362

\[ {} t y^{\prime }+y = t^{2} y^{2} \]

17363

\[ {} y^{\prime } = y \left (t y^{3}-1\right ) \]

17364

\[ {} y^{\prime }+\frac {3 y}{t} = t^{2} y^{2} \]

17365

\[ {} t^{2} y^{\prime }+2 t y-y^{3} = 0 \]

17366

\[ {} 5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]

17367

\[ {} 3 t y^{\prime }+9 y = 2 t y^{{5}/{3}} \]

17368

\[ {} y^{\prime } = y+\sqrt {y} \]

17369

\[ {} y^{\prime } = r y-k^{2} y^{2} \]

17370

\[ {} y^{\prime } = a y+b y^{3} \]

17371

\[ {} y^{\prime }+3 t y = 4-4 t^{2}+y^{2} \]

17372

\[ {} \left (3 x-y \right ) x^{\prime }+9 y -2 x = 0 \]

17373

\[ {} 1 = \left (3 \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

17374

\[ {} y^{\prime }-4 y^{2} {\mathrm e}^{x} = y \]

17375

\[ {} x y^{\prime }+\left (1+x \right ) y = x \]

17376

\[ {} y^{\prime } = \frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \]

17377

\[ {} \frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

17378

\[ {} 5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

17379

\[ {} 2 x y y^{\prime }+\ln \left (x \right ) = -y^{2}-1 \]

17380

\[ {} \left (2-x \right ) y^{\prime } = y+2 \left (2-x \right )^{5} \]

17381

\[ {} x y^{\prime } = -\frac {1}{\ln \left (x \right )} \]

17382

\[ {} x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

17383

\[ {} 4 x y y^{\prime } = 8 x^{2}+5 y^{2} \]

17384

\[ {} y^{\prime }+y-y^{{1}/{4}} = 0 \]

17385

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = 4+x \left (t \right )] \]

17386

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+\sin \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-\cos \left (t \right )] \]

17387

\[ {} [x^{\prime }\left (t \right ) = -2 t x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

17388

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-3] \]

17389

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

17390

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+t y \left (t \right ), y^{\prime }\left (t \right ) = t x \left (t \right )-y \left (t \right )] \]

17391

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+\sin \left (t \right ) y \left (t \right )] \]

17392

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

17393

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

17394

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

17395

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 \sin \left (t \right )] \]

17396

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )+2 t, y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )-3] \]

17397

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+1, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-3] \]

17398

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )-4, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-6] \]

17399

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {3 y \left (t \right )}{4}+8, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}+y \left (t \right )-\frac {23}{2}\right ] \]

17400

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-11, y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )-35] \]