4.21.5 Problems 401 to 500

Table 4.1319: Higher order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

15612

\[ {} y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

15778

\[ {} y^{\prime }+y^{\prime \prime \prime } = 0 \]

15784

\[ {} -4 y+6 y^{\prime }-4 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

15785

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

15786

\[ {} y^{\prime \prime \prime \prime }+16 y = 0 \]

15787

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

15788

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

15789

\[ {} 36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15790

\[ {} y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

15791

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

15792

\[ {} y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

15794

\[ {} y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

15795

\[ {} y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

15804

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

15805

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]

15829

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

16511

\[ {} y^{\prime \prime \prime } = y^{\prime \prime } \]

16514

\[ {} y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

16534

\[ {} y^{\prime \prime \prime } = y^{\prime \prime } \]

16554

\[ {} y^{\prime \prime \prime }+y = 0 \]

16579

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

16581

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

16594

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

16595

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

16600

\[ {} y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

16601

\[ {} y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

16640

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

16641

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

16642

\[ {} y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

16643

\[ {} y^{\prime \prime \prime \prime }-81 y = 0 \]

16644

\[ {} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

16645

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

16646

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

16647

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

16648

\[ {} y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

16649

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

16650

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

16651

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

16652

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

16653

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

16654

\[ {} y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]

16655

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]

16656

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

16657

\[ {} y^{\prime \prime \prime }+216 y = 0 \]

16658

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

16659

\[ {} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

16660

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

16661

\[ {} y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

16662

\[ {} 16 y^{\prime \prime \prime \prime }-y = 0 \]

16663

\[ {} 4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

16664

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

16665

\[ {} y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

16829

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

16834

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime } = 0 \]

16847

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

17085

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

17086

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

17111

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

17112

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = 0 \]

17126

\[ {} y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]

17654

\[ {} y^{\prime \prime \prime } = 0 \]

17655

\[ {} y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0 \]

17656

\[ {} 8 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

17657

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

17658

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

17659

\[ {} 3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

17660

\[ {} 6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

17661

\[ {} y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

17662

\[ {} 5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]

17663

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

17664

\[ {} y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0 \]

17665

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

17666

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0 \]

17667

\[ {} y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y = 0 \]

17668

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y = 0 \]

17669

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime } = 0 \]

17670

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime } = 0 \]

17671

\[ {} y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

17672

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

17673

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

17674

\[ {} y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = 0 \]

17675

\[ {} y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y = 0 \]

17676

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

17677

\[ {} y^{\prime \prime \prime }-y = 0 \]

17678

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime } = 0 \]

17679

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

17680

\[ {} 24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y = 0 \]

17681

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

17682

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

17683

\[ {} 8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime } = 0 \]

17684

\[ {} 2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime } = 0 \]

17685

\[ {} y^{\left (5\right )}+8 y^{\prime \prime \prime \prime } = 0 \]

17686

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

17687

\[ {} y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y = 0 \]

17688

\[ {} y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y = 0 \]

17689

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]

17690

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y = 0 \]

17691

\[ {} \frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10} = 0 \]

17859

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

17860

\[ {} 9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]