34.8.4 problem 19

Internal problem ID [7991]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 13. Homogeneous Linear equations with constant coefficients. Supplemetary problems. Page 86
Problem number : 19
Date solved : Tuesday, September 30, 2025 at 05:14:00 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-6*diff(diff(diff(y(x),x),x),x)+12*diff(diff(y(x),x),x)-8*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_4 \,x^{2}+c_3 x +c_2 \right ) {\mathrm e}^{2 x}+c_1 \]
Mathematica. Time used: 0.02 (sec). Leaf size: 36
ode=D[y[x],{x,4}]-6*D[y[x],{x,3}]+12*D[y[x],{x,2}]-8*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^xe^{2 K[1]} (c_1+K[1] (c_2+c_3 K[1]))dK[1]+c_4 \end{align*}
Sympy. Time used: 0.105 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*Derivative(y(x), x) + 12*Derivative(y(x), (x, 2)) - 6*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \left (C_{2} + x \left (C_{3} + C_{4} x\right )\right ) e^{2 x} \]