34.5.5 problem 21

Internal problem ID [7957]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 9. Equations of first order and higher degree. Supplemetary problems. Page 65
Problem number : 21
Date solved : Tuesday, September 30, 2025 at 05:12:13 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} 8 y {y^{\prime }}^{2}-2 x y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.052 (sec). Leaf size: 95
ode:=8*y(x)*diff(y(x),x)^2-2*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {2}\, x}{4} \\ y &= \frac {\sqrt {2}\, x}{4} \\ y &= 0 \\ \ln \left (x \right )+\operatorname {arctanh}\left (\frac {1}{\sqrt {-\frac {8 y^{2}-x^{2}}{x^{2}}}}\right )+\ln \left (\frac {y}{x}\right )-c_1 &= 0 \\ \ln \left (x \right )-\operatorname {arctanh}\left (\frac {1}{\sqrt {-\frac {8 y^{2}-x^{2}}{x^{2}}}}\right )+\ln \left (\frac {y}{x}\right )-c_1 &= 0 \\ \end{align*}
Mathematica. Time used: 0.217 (sec). Leaf size: 174
ode=8*y[x]*D[y[x],x]^2-2*x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {e^{4 c_1} \sqrt {e^{8 c_1}-2 i x}}{2 \sqrt {2}}\\ y(x)&\to \frac {e^{4 c_1} \sqrt {e^{8 c_1}-2 i x}}{2 \sqrt {2}}\\ y(x)&\to -\frac {e^{4 c_1} \sqrt {2 i x+e^{8 c_1}}}{2 \sqrt {2}}\\ y(x)&\to \frac {e^{4 c_1} \sqrt {2 i x+e^{8 c_1}}}{2 \sqrt {2}}\\ y(x)&\to 0\\ y(x)&\to -\frac {x}{2 \sqrt {2}}\\ y(x)&\to \frac {x}{2 \sqrt {2}} \end{align*}
Sympy. Time used: 135.995 (sec). Leaf size: 388
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) + 8*y(x)*Derivative(y(x), x)**2 + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}\right ] \]