30.12.37 problem 45 (c)

Internal problem ID [7629]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 4, Linear Second-Order Equations. EXERCISES 4.2 at page 164
Problem number : 45 (c)
Date solved : Tuesday, September 30, 2025 at 04:55:07 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+15 y^{\prime \prime }+4 y^{\prime }-12 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 33
ode:=diff(diff(diff(diff(diff(y(t),t),t),t),t),t)-3*diff(diff(diff(diff(y(t),t),t),t),t)-5*diff(diff(diff(y(t),t),t),t)+15*diff(diff(y(t),t),t)+4*diff(y(t),t)-12*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \left (c_5 \,{\mathrm e}^{5 t}+c_4 \,{\mathrm e}^{4 t}+c_2 \,{\mathrm e}^{3 t}+c_3 \,{\mathrm e}^{t}+c_1 \right ) {\mathrm e}^{-2 t} \]
Mathematica. Time used: 0.002 (sec). Leaf size: 42
ode=D[y[t],{t,5}]-3*D[y[t],{t,4}]-5*D[y[t],{t,3}]+15*D[y[t],{t,2}]+4*D[y[t],{t,1}]-12*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to e^{-2 t} \left (c_2 e^t+e^{3 t} \left (e^t \left (c_5 e^t+c_4\right )+c_3\right )+c_1\right ) \end{align*}
Sympy. Time used: 0.143 (sec). Leaf size: 32
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-12*y(t) + 4*Derivative(y(t), t) + 15*Derivative(y(t), (t, 2)) - 5*Derivative(y(t), (t, 3)) - 3*Derivative(y(t), (t, 4)) + Derivative(y(t), (t, 5)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} e^{- 2 t} + C_{2} e^{- t} + C_{3} e^{t} + C_{4} e^{2 t} + C_{5} e^{3 t} \]