30.12.23 problem 24

Internal problem ID [7615]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 4, Linear Second-Order Equations. EXERCISES 4.2 at page 164
Problem number : 24
Date solved : Tuesday, September 30, 2025 at 04:54:58 PM
CAS classification : [_quadrature]

\begin{align*} 3 z^{\prime }+11 z&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 10
ode:=3*diff(z(t),t)+11*z(t) = 0; 
dsolve(ode,z(t), singsol=all);
 
\[ z = c_1 \,{\mathrm e}^{-\frac {11 t}{3}} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 20
ode=3*D[z[t],t]+11*z[t]==0; 
ic={}; 
DSolve[{ode,ic},z[t],t,IncludeSingularSolutions->True]
 
\begin{align*} z(t)&\to c_1 e^{-11 t/3}\\ z(t)&\to 0 \end{align*}
Sympy. Time used: 0.078 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
z = Function("z") 
ode = Eq(11*z(t) + 3*Derivative(z(t), t),0) 
ics = {} 
dsolve(ode,func=z(t),ics=ics)
 
\[ z{\left (t \right )} = C_{1} e^{- \frac {11 t}{3}} \]