Internal
problem
ID
[7586]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
4,
Linear
Second-Order
Equations.
EXERCISES
4.1
at
page
156
Problem
number
:
6
Date
solved
:
Tuesday, September 30, 2025 at 04:54:39 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(t),t),t)+4*y(t) = 2*cos(2*t); ic:=[y(0) = 0, D(y)(0) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=1*D[y[t],{t,2}]+0*D[y[t],t]+4*y[t]==2*Cos[2*t]; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) - 2*cos(2*t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)