4.11.9 Problems 801 to 900

Table 4.1071: Third and higher order homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

18252

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

18253

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

18254

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

18255

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

18256

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

18257

\[ {} y^{\left (5\right )} = 0 \]

18258

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

18259

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

18260

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

18410

\[ {} x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

18411

\[ {} x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

18412

\[ {} \left (1+x \right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

18413

\[ {} \left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

18480

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

18481

\[ {} y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]

18483

\[ {} 2 y^{\prime \prime }+4 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime } = 0 \]

18484

\[ {} 6 x y^{\prime \prime }+6 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime } = 0 \]

19006

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]

19021

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

19022

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19023

\[ {} y^{\prime \prime \prime \prime }-9 y = 0 \]

19082

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

19084

\[ {} \left (x -4\right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

19085

\[ {} \left (x^{2}-2\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+3 y = 0 \]

19086

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y = 0 \]

19088

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+7 t^{2} y = 0 \]

19090

\[ {} \left (x -1\right ) y^{\prime \prime \prime \prime }+\left (x +5\right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]

19091

\[ {} \left (x^{2}-25\right ) y^{\left (6\right )}+x^{2} y^{\prime \prime }+5 y = 0 \]

19094

\[ {} y^{\prime \prime \prime }+y^{\prime } = 0 \]

19095

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

19096

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }-4 y^{\prime }-16 y = 0 \]

19097

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 0 \]

19098

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

19099

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19258

\[ {} a^{3} y^{\prime \prime \prime } y^{\prime \prime } = \sqrt {1+c^{2} {y^{\prime \prime }}^{2}} \]

19259

\[ {} y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

19261

\[ {} y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3} = 0 \]

19275

\[ {} 5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime } = 0 \]

19276

\[ {} 40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0 \]

19279

\[ {} 2 x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+12 x y^{\prime }-12 y = 0 \]

19280

\[ {} y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}} = 0 \]

19284

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

19285

\[ {} -y+x y^{\prime }-y^{\prime \prime }+x y^{\prime \prime \prime } = 0 \]

19286

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = 0 \]

19290

\[ {} y^{\prime }+y^{\prime \prime \prime } = 0 \]

19296

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

19297

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

19298

\[ {} y^{\prime \prime \prime \prime }+4 y = 0 \]

19299

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19301

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19388

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

19643

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

19644

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

19645

\[ {} y^{\prime \prime \prime }-y = 0 \]

19646

\[ {} y^{\prime \prime \prime }+y = 0 \]

19647

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

19648

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

19649

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19650

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

19651

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

19652

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

19653

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19654

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

19655

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

19656

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

19657

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

19658

\[ {} y^{\prime \prime \prime \prime } = 0 \]

19662

\[ {} 3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

19663

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19664

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

19665

\[ {} x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

19870

\[ {} y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

19878

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

19884

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

19891

\[ {} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

19898

\[ {} y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0 \]

19900

\[ {} y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 y y^{\prime } x +3 x^{2} y^{2}\right ) y^{\prime }+x^{3} y^{3} = 0 \]

19903

\[ {} x^{3} v^{\prime \prime \prime }+2 x^{2} v^{\prime \prime }+v = 0 \]

19942

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

19943

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

19944

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

19945

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

19946

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

19947

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

19948

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

19973

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

20156

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

20157

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

20159

\[ {} y^{\prime \prime \prime \prime }-m^{2} y = 0 \]

20160

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

20179

\[ {} y^{\prime \prime \prime \prime }+4 y = 0 \]

20180

\[ {} y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

20210

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

20211

\[ {} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 0 \]

20220

\[ {} -8 y+7 x y^{\prime }-3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

20222

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

20232

\[ {} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

20254

\[ {} a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

20256

\[ {} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

20269

\[ {} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y = 0 \]