Internal
problem
ID
[7450]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.3,
Linear
equations.
Exercises.
page
54
Problem
number
:
22
Date
solved
:
Tuesday, September 30, 2025 at 04:35:45 PM
CAS
classification
:
[_linear]
With initial conditions
ode:=sin(x)*diff(y(x),x)+y(x)*cos(x) = x*sin(x); ic:=[y(1/2*Pi) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=Sin[x]*D[y[x],x]+y[x]*Cos[x]==x*Sin[x]; ic={y[Pi/2]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*sin(x) + y(x)*cos(x) + sin(x)*Derivative(y(x), x),0) ics = {y(pi/2): 2} dsolve(ode,func=y(x),ics=ics)