4.11.4 Problems 301 to 400

Table 4.1061: Third and higher order homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

6733

\[ {} \left (a -x \right )^{3} \left (-x +b \right )^{3} y^{\prime \prime \prime } = c y \]

6735

\[ {} y^{\prime \prime \prime \prime } = 0 \]

6740

\[ {} a y+y^{\prime \prime \prime \prime } = 0 \]

6742

\[ {} y+y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6743

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

6744

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0 \]

6749

\[ {} -8 y-2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6750

\[ {} y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

6751

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

6752

\[ {} 27 y-12 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6753

\[ {} a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6754

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6756

\[ {} y a^{2} b^{2}+\left (a^{2}+b^{2}\right ) y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6757

\[ {} 10 f^{\prime }\left (x \right ) y^{\prime }+3 y \left (3 f \left (x \right )^{2}+f^{\prime \prime }\left (x \right )\right )+10 f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6758

\[ {} -2 y+5 y^{\prime }-3 y^{\prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6760

\[ {} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6762

\[ {} -y-2 y^{\prime }+2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6763

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

6764

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

6765

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6766

\[ {} -y^{\prime }+y^{\prime \prime }-3 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6767

\[ {} y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6768

\[ {} 16 y-16 y^{\prime }+12 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6769

\[ {} a^{4} x^{4} y+4 a^{3} x^{3} y^{\prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a x y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

6771

\[ {} -3 y^{\prime }+11 y^{\prime \prime }-12 y^{\prime \prime \prime }+4 y^{\prime \prime \prime \prime } = 0 \]

6772

\[ {} 3 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } x = 0 \]

6773

\[ {} 5 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } x = 0 \]

6774

\[ {} x^{2} y^{\prime \prime \prime \prime } = 2 y^{\prime \prime \prime } \]

6775

\[ {} x^{2} y^{\prime \prime \prime \prime } = 2 y^{\prime \prime } \]

6776

\[ {} 2 y^{\prime \prime }+4 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime } = 0 \]

6777

\[ {} 6 y^{\prime \prime }+6 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime } = 0 \]

6778

\[ {} 12 y^{\prime \prime }+8 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime } = 0 \]

6779

\[ {} -a^{2} y+12 y^{\prime \prime }+8 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime } = 0 \]

6781

\[ {} -c^{4} y+16 \left (1+a -b \right ) \left (2+a -b \right ) y^{\prime \prime }+32 \left (2+a -b \right ) x y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime \prime \prime } = 0 \]

6782

\[ {} -a^{4} x^{3} y-x y^{\prime \prime }+2 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime } = 0 \]

6783

\[ {} 6 x y^{\prime \prime }+6 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime } = 0 \]

6784

\[ {} -k y-\left (-a b c +x \right ) y^{\prime }+\left (a b +a c +b c +a +b +c +1\right ) x y^{\prime \prime }+\left (3+a +b +c \right ) x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime } = 0 \]

6785

\[ {} -4 y-2 x y^{\prime }+4 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 0 \]

6786

\[ {} y+3 x y^{\prime }+9 x^{2} y^{\prime \prime }+6 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 0 \]

6787

\[ {} 12 x^{2} y^{\prime \prime }+8 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 0 \]

6788

\[ {} a y+12 x^{2} y^{\prime \prime }+8 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 0 \]

6789

\[ {} \operatorname {A4} y+\operatorname {A3} x y^{\prime }+\operatorname {A2} \,x^{2} y^{\prime \prime }+\operatorname {A1} \,x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 0 \]

6790

\[ {} -b^{4} x^{\frac {2}{a}} y+16 \left (-2 a +1\right ) \left (1-a \right ) a^{2} x^{2} y^{\prime \prime }-32 \left (-2 a +1\right ) a^{2} x^{3} y^{\prime \prime \prime }+16 a^{4} x^{4} y^{\prime \prime \prime \prime } = 0 \]

6791

\[ {} y \,{\mathrm e}^{x}+4 \,{\mathrm e}^{x} y^{\prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+\left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime } = 0 \]

6792

\[ {} 2 y^{\prime }-2 y^{\prime \prime }-y^{\prime \prime \prime }+y^{\left (5\right )} = 0 \]

6793

\[ {} y^{\prime }+2 y^{\prime \prime \prime }+y^{\left (5\right )} = 0 \]

6795

\[ {} y^{\left (6\right )} = 0 \]

6796

\[ {} a y+y^{\left (6\right )} = 0 \]

6797

\[ {} y+2 y^{\prime \prime \prime }+y^{\left (6\right )} = 0 \]

6798

\[ {} y^{\left (8\right )} = y \]

6799

\[ {} y-2 y^{\prime \prime \prime \prime }+y^{\left (8\right )} = 0 \]

6800

\[ {} y^{\prime \prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

6801

\[ {} -y y^{\prime }+{y^{\prime }}^{2}+y^{\prime \prime \prime } = 0 \]

6802

\[ {} a y y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

6804

\[ {} \left (1-y\right ) y^{\prime }+x {y^{\prime }}^{2}-x \left (1-y\right ) y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

6805

\[ {} y^{3} y^{\prime }-y^{\prime } y^{\prime \prime }+y y^{\prime \prime \prime } = 0 \]

6806

\[ {} 3 y^{\prime } y^{\prime \prime }+\left (a +y\right ) y^{\prime \prime \prime } = 0 \]

6807

\[ {} 3 y^{2}+18 y y^{\prime } x +9 x^{2} {y^{\prime }}^{2}+9 x^{2} y y^{\prime \prime }+3 x^{3} y^{\prime } y^{\prime \prime }+x^{3} y y^{\prime \prime \prime } = 0 \]

6808

\[ {} 2 {y^{\prime }}^{3}+3 y^{\prime \prime }+6 y y^{\prime } y^{\prime \prime }+\left (x +y^{2}\right ) y^{\prime \prime \prime } = 0 \]

6809

\[ {} 15 {y^{\prime }}^{3}-18 y y^{\prime } y^{\prime \prime }+4 y^{2} y^{\prime \prime \prime } = 0 \]

6810

\[ {} 40 {y^{\prime }}^{3}-45 y y^{\prime } y^{\prime \prime }+9 y^{2} y^{\prime \prime \prime } = 0 \]

6811

\[ {} {y^{\prime }}^{2}+y^{\prime } y^{\prime \prime \prime } = 2 {y^{\prime \prime }}^{2} \]

6813

\[ {} 2 y^{\prime } y^{\prime \prime \prime } = 2 {y^{\prime \prime }}^{2} \]

6814

\[ {} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime } = 3 y^{\prime } {y^{\prime \prime }}^{2} \]

6815

\[ {} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime } = \left (a +3 y^{\prime }\right ) {y^{\prime \prime }}^{2} \]

6818

\[ {} y^{\prime \prime } y^{\prime \prime \prime } = a \sqrt {1+b^{2} {y^{\prime \prime }}^{2}} \]

6821

\[ {} \sqrt {1+{y^{\prime \prime }}^{2}}\, \left (1-y^{\prime \prime \prime }\right ) = y^{\prime \prime } y^{\prime \prime \prime } \]

6822

\[ {} 3 y^{\prime \prime } y^{\prime \prime \prime \prime } = 5 {y^{\prime \prime \prime }}^{2} \]

6823

\[ {} 40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0 \]

7056

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \]

7057

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

7058

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

7059

\[ {} y^{\prime \prime \prime \prime }-a^{2} y = 0 \]

7062

\[ {} y^{\prime \prime \prime \prime } = 0 \]

7064

\[ {} 3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

7065

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

7067

\[ {} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

7068

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

7069

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

7070

\[ {} 36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

7071

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \]

7074

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

7076

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

7077

\[ {} y^{\prime \prime \prime }+8 y = 0 \]

7078

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

7079

\[ {} y^{\prime }+2 y^{\prime \prime \prime }+y^{\left (5\right )} = 0 \]

7084

\[ {} 3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

7282

\[ {} y^{\prime \prime \prime }+y = 0 \]

7283

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0 \]

7284

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0 \]

7285

\[ {} y^{\prime \prime \prime \prime }+4 y = 0 \]

7345

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime } = 0 \]

7364

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y = 0 \]

7620

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime }+4 y = 0 \]

7621

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }-y^{\prime }+6 y = 0 \]

7622

\[ {} z^{\prime \prime \prime }+2 z^{\prime \prime }-4 z^{\prime }-8 z = 0 \]

7623

\[ {} y^{\prime \prime \prime }-7 y^{\prime \prime }+7 y^{\prime }+15 y = 0 \]

7624

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

7625

\[ {} y^{\prime \prime \prime }-y^{\prime } = 0 \]

7626

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]