4.10.14 Problems 1301 to 1400

Table 4.1043: System of differential equations

#

ODE

Mathematica

Maple

Sympy

19130

\[ {} [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )-4 x_{2} \left (t \right )+5 x_{3} \left (t \right )+9 x_{4} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-5 x_{2} \left (t \right )+4 x_{3} \left (t \right )+12 x_{4} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-x_{3} \left (t \right )+2 x_{4} \left (t \right ), x_{4}^{\prime }\left (t \right ) = -2 x_{2} \left (t \right )+2 x_{3} \left (t \right )+3 x_{4} \left (t \right )] \]

19131

\[ {} [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )-5 x_{2} \left (t \right )+8 x_{3} \left (t \right )+14 x_{4} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -6 x_{1} \left (t \right )-8 x_{2} \left (t \right )+11 x_{3} \left (t \right )+27 x_{4} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -6 x_{1} \left (t \right )-4 x_{2} \left (t \right )+7 x_{3} \left (t \right )+17 x_{4} \left (t \right ), x_{4}^{\prime }\left (t \right ) = -2 x_{2} \left (t \right )+2 x_{3} \left (t \right )+4 x_{4} \left (t \right )] \]

19132

\[ {} \left [x_{1}^{\prime }\left (t \right ) = 3 x_{2} \left (t \right )-2 x_{4} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -\frac {x_{1} \left (t \right )}{2}+x_{2} \left (t \right )-3 x_{3} \left (t \right )-\frac {5 x_{4} \left (t \right )}{2}, x_{3}^{\prime }\left (t \right ) = 3 x_{2} \left (t \right )-5 x_{3} \left (t \right )-3 x_{4} \left (t \right ), x_{4}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )-3 x_{4} \left (t \right )\right ] \]

19133

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

19134

\[ {} \left [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )}{2}-3 x_{2} \left (t \right )\right ] \]

19135

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )] \]

19136

\[ {} \left [x_{1}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )}{2}-\frac {x_{2} \left (t \right )}{4}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-\frac {x_{2} \left (t \right )}{2}\right ] \]

19137

\[ {} \left [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-\frac {5 x_{2} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )}{2}-x_{2} \left (t \right )\right ] \]

19138

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )] \]

19139

\[ {} [x_{1}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+x_{2} \left (t \right )] \]

19140

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

19141

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

19142

\[ {} \left [x_{1}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )}{2}+\frac {x_{2} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )\right ] \]

19143

\[ {} [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

19144

\[ {} \left [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+\frac {5 x_{2} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = -\frac {5 x_{1} \left (t \right )}{2}+2 x_{2} \left (t \right )\right ] \]

19145

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -8 x_{1} \left (t \right )-5 x_{2} \left (t \right )-3 x_{3} \left (t \right )] \]

19146

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+4 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )] \]

19147

\[ {} [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )-9 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

19148

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

19149

\[ {} [x_{1}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

19150

\[ {} [x_{1}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )] \]

19151

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-5 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )] \]

19152

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right )-x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )] \]

19153

\[ {} [x_{1}^{\prime }\left (t \right ) = -k_{1} x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = k_{1} x_{1} \left (t \right )-k_{2} x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = k_{2} x_{2} \left (t \right )] \]

19154

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )+t] \]

19155

\[ {} \left [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+\sqrt {3}\, x_{2} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = \sqrt {3}\, x_{1} \left (t \right )-x_{2} \left (t \right )+\sqrt {3}\, {\mathrm e}^{-t}\right ] \]

19156

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-5 x_{2} \left (t \right )-\cos \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+\sin \left (t \right )] \]

19157

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+{\mathrm e}^{-2 t}, x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-2 x_{2} \left (t \right )-2 \,{\mathrm e}^{t}] \]

19158

\[ {} [x_{1}^{\prime }\left (t \right ) = 1-x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right )+t, x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-x_{2} \left (t \right )+3 x_{3} \left (t \right )+{\mathrm e}^{-t}] \]

19159

\[ {} \left [x_{1}^{\prime }\left (t \right ) = -\frac {x_{1} \left (t \right )}{2}+\frac {x_{2} \left (t \right )}{2}-\frac {x_{3} \left (t \right )}{2}+1, x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-2 x_{2} \left (t \right )+x_{3} \left (t \right )+t, x_{3}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )}{2}+\frac {x_{2} \left (t \right )}{2}-\frac {3 x_{3} \left (t \right )}{2}+11 \,{\mathrm e}^{-3 t}\right ] \]

19160

\[ {} [x_{1}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right )+3 t, x_{2}^{\prime }\left (t \right ) = -2 x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right )+3 \cos \left (t \right )] \]

19161

\[ {} \left [x_{1}^{\prime }\left (t \right ) = -\frac {x_{1} \left (t \right )}{2}+x_{2} \left (t \right )+\frac {x_{3} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+x_{3} \left (t \right )-\sin \left (t \right ), x_{3}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )}{2}+x_{2} \left (t \right )-\frac {x_{3} \left (t \right )}{2}\right ] \]

19162

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+1, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{2} \left (t \right )-x_{3} \left (t \right )] \]

19163

\[ {} [x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-9 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

19164

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-9 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

19165

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+4 x_{3} \left (t \right )] \]

19166

\[ {} [x_{1}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-3 x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 8 x_{1} \left (t \right )-5 x_{2} \left (t \right )-4 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )+3 x_{2} \left (t \right )+3 x_{3} \left (t \right )] \]

19167

\[ {} [x_{1}^{\prime }\left (t \right ) = -7 x_{1} \left (t \right )+9 x_{2} \left (t \right )-6 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -8 x_{1} \left (t \right )+11 x_{2} \left (t \right )-7 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+3 x_{2} \left (t \right )-x_{3} \left (t \right )] \]

19168

\[ {} [x_{1}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )+6 x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-2 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

19169

\[ {} [x_{1}^{\prime }\left (t \right ) = -8 x_{1} \left (t \right )-16 x_{2} \left (t \right )-16 x_{3} \left (t \right )-17 x_{4} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-10 x_{2} \left (t \right )-8 x_{3} \left (t \right )-7 x_{4} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-2 x_{3} \left (t \right )-3 x_{4} \left (t \right ), x_{4}^{\prime }\left (t \right ) = 6 x_{1} \left (t \right )+14 x_{2} \left (t \right )+14 x_{3} \left (t \right )+14 x_{4} \left (t \right )] \]

19170

\[ {} \left [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )-2 x_{3} \left (t \right )+3 x_{4} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-\frac {3 x_{2} \left (t \right )}{2}-x_{3} \left (t \right )+\frac {7 x_{4} \left (t \right )}{2}, x_{3}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+\frac {x_{2} \left (t \right )}{2}-\frac {3 x_{4} \left (t \right )}{2}, x_{4}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+\frac {3 x_{2} \left (t \right )}{2}+3 x_{3} \left (t \right )-\frac {7 x_{4} \left (t \right )}{2}\right ] \]

19171

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-7 x_{2} \left (t \right )] \]

19172

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )] \]

19173

\[ {} [x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+x_{2} \left (t \right )+3 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 6 x_{1} \left (t \right )+4 x_{2} \left (t \right )+6 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -5 x_{1} \left (t \right )-2 x_{2} \left (t \right )-4 x_{3} \left (t \right )] \]

19174

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -14 x_{1} \left (t \right )-5 x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 15 x_{1} \left (t \right )+5 x_{2} \left (t \right )-2 x_{3} \left (t \right )] \]

19175

\[ {} [x^{\prime }\left (t \right ) = -2 y \left (t \right )+x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+4 x \left (t \right ) y \left (t \right )] \]

19176

\[ {} [x^{\prime }\left (t \right ) = 1+5 y \left (t \right ), y^{\prime }\left (t \right ) = 1-6 x \left (t \right )^{2}] \]

19324

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )] \]

19325

\[ {} [y^{\prime }\left (x \right ) = y \left (x \right )+z \left (x \right ), z^{\prime }\left (x \right ) = y \left (x \right )+z \left (x \right )+x] \]

19326

\[ {} \left [y^{\prime }\left (x \right ) = \frac {y \left (x \right )^{2}}{z \left (x \right )}, z^{\prime }\left (x \right ) = \frac {y \left (x \right )}{2}\right ] \]

19327

\[ {} \left [y^{\prime }\left (x \right ) = 1-\frac {1}{z \left (x \right )}, z^{\prime }\left (x \right ) = \frac {1}{y \left (x \right )-x}\right ] \]

19328

\[ {} [y^{\prime }\left (x \right ) = -z \left (x \right ), z^{\prime }\left (x \right ) = y \left (x \right )] \]

19331

\[ {} \left [y^{\prime }\left (x \right ) = \frac {z \left (x \right )^{2}}{y \left (x \right )}, z^{\prime }\left (x \right ) = \frac {y \left (x \right )^{2}}{z \left (x \right )}\right ] \]

19332

\[ {} \left [y^{\prime }\left (x \right ) = \frac {y \left (x \right )^{2}}{z \left (x \right )}, z^{\prime }\left (x \right ) = \frac {z \left (x \right )^{2}}{y \left (x \right )}\right ] \]

19333

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )] \]

19334

\[ {} [x^{\prime }\left (t \right )+x \left (t \right )+y \left (t \right ) = t^{2}, y^{\prime }\left (t \right )+y \left (t \right )+z \left (t \right ) = 2 t, z^{\prime }\left (t \right )+z \left (t \right ) = t] \]

19335

\[ {} [x^{\prime }\left (t \right )+5 x \left (t \right )+y \left (t \right ) = 7 \,{\mathrm e}^{t}-27, -2 x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = -3 \,{\mathrm e}^{t}+12] \]

19336

\[ {} [y^{\prime \prime }\left (x \right )+z^{\prime }\left (x \right )-2 z \left (x \right ) = {\mathrm e}^{2 x}, z^{\prime }\left (x \right )+2 y^{\prime }\left (x \right )-3 y \left (x \right ) = 0] \]

19337

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+{\mathrm e}^{t}+{\mathrm e}^{-t}] \]

19338

\[ {} \left [y^{\prime }\left (x \right )+\frac {2 z \left (x \right )}{x^{2}} = 1, z^{\prime }\left (x \right )+y \left (x \right ) = x\right ] \]

19339

\[ {} [t x^{\prime }\left (t \right )-x \left (t \right )-3 y \left (t \right ) = t, t y^{\prime }\left (t \right )-x \left (t \right )+y \left (t \right ) = 0] \]

19340

\[ {} [t x^{\prime }\left (t \right )+6 x \left (t \right )-y \left (t \right )-3 z \left (t \right ) = 0, t y^{\prime }\left (t \right )+23 x \left (t \right )-6 y \left (t \right )-9 z \left (t \right ) = 0, t z^{\prime }\left (t \right )+x \left (t \right )+y \left (t \right )-2 z \left (t \right ) = 0] \]

19341

\[ {} [x^{\prime }\left (t \right )+5 x \left (t \right )+y \left (t \right ) = {\mathrm e}^{t}, y^{\prime }\left (t \right )-x \left (t \right )+3 y \left (t \right ) = {\mathrm e}^{2 t}] \]

19752

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

19753

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \]

19754

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+t -1, y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )-5 t -2] \]

19755

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

19756

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

19757

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

19758

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )] \]

19759

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

19760

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

19761

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )] \]

19762

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

19763

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )] \]

19764

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+5 y \left (t \right )] \]

19765

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-5 t +2, y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )-8 t -8] \]

19766

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )] \]

19767

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right )] \]

19768

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

19769

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -17 x \left (t \right )-5 y \left (t \right )] \]

19770

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

19771

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

19772

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )] \]

19801

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

19996

\[ {} [z^{\prime }\left (x \right )+7 y \left (x \right )-3 z \left (x \right ) = 0, 7 y^{\prime }\left (x \right )+63 y \left (x \right )-36 z \left (x \right ) = 0] \]

19997

\[ {} [z^{\prime }\left (x \right )+2 y^{\prime }\left (x \right )+3 y \left (x \right ) = 0, y^{\prime }\left (x \right )+3 y \left (x \right )-2 z \left (x \right ) = 0] \]

19998

\[ {} [y^{\prime }\left (x \right )+3 y \left (x \right )+z \left (x \right ) = 0, z^{\prime }\left (x \right )+3 y \left (x \right )+5 z \left (x \right ) = 0] \]

19999

\[ {} [y^{\prime }\left (x \right )+3 y \left (x \right )+2 z \left (x \right ) = 0, z^{\prime }\left (x \right )+2 y \left (x \right )-4 z \left (x \right ) = 0] \]

20000

\[ {} [y^{\prime }\left (x \right )-3 y \left (x \right )-2 z \left (x \right ) = 0, z^{\prime }\left (x \right )+y \left (x \right )-2 z \left (x \right ) = 0] \]

20001

\[ {} [y^{\prime }\left (x \right )+z^{\prime }\left (x \right )+6 y \left (x \right ) = 0, z^{\prime }\left (x \right )+5 y \left (x \right )+z \left (x \right ) = 0] \]

20002

\[ {} [z^{\prime }\left (x \right )+y^{\prime }\left (x \right )+5 y \left (x \right )-3 z \left (x \right ) = x +{\mathrm e}^{x}, y^{\prime }\left (x \right )+2 y \left (x \right )-z \left (x \right ) = {\mathrm e}^{x}] \]

20003

\[ {} [z^{\prime }\left (x \right )+y \left (x \right )+3 z \left (x \right ) = {\mathrm e}^{x}, y^{\prime }\left (x \right )+3 y \left (x \right )+4 z \left (x \right ) = {\mathrm e}^{2 x}] \]

20004

\[ {} [z^{\prime }\left (x \right )-3 y \left (x \right )+2 z \left (x \right ) = {\mathrm e}^{x}, y^{\prime }\left (x \right )+2 y \left (x \right )-z \left (x \right ) = {\mathrm e}^{3 x}] \]

20005

\[ {} [z^{\prime }\left (x \right )+5 y \left (x \right )-2 z \left (x \right ) = x, y^{\prime }\left (x \right )+4 y \left (x \right )+z \left (x \right ) = x] \]

20006

\[ {} [z^{\prime }\left (x \right )+7 y \left (x \right )-9 z \left (x \right ) = {\mathrm e}^{x}, y^{\prime }\left (x \right )-y \left (x \right )-3 z \left (x \right ) = {\mathrm e}^{2 x}] \]

20007

\[ {} [y^{\prime }\left (x \right )-2 y \left (x \right )-2 z \left (x \right ) = {\mathrm e}^{3 x}, z^{\prime }\left (x \right )+5 y \left (x \right )-2 z \left (x \right ) = {\mathrm e}^{4 x}] \]

20321

\[ {} [x^{\prime }\left (t \right )+2 x \left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = 0, 5 x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = 0] \]

20322

\[ {} [x^{\prime }\left (t \right )-7 x \left (t \right )+y \left (t \right ) = 0, y^{\prime }\left (t \right )-2 x \left (t \right )-5 y \left (t \right ) = 0] \]

20323

\[ {} [x^{\prime }\left (t \right )+2 x \left (t \right )-3 y \left (t \right ) = t, y^{\prime }\left (t \right )-3 x \left (t \right )+2 y \left (t \right ) = {\mathrm e}^{2 t}] \]