Internal
problem
ID
[7107]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
4.
Higher
order
linear
differential
equations.
Lesson
21.
Undetermined
Coefficients
Problem
number
:
Exercise
21.31,
page
231
Date
solved
:
Tuesday, September 30, 2025 at 04:21:32 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+9*y(x) = 8*cos(x); ic:=[y(1/2*Pi) = -1, D(y)(1/2*Pi) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+9*y[x]==8*Cos[x]; ic={y[Pi/2]==-1,Derivative[1][y][Pi/2]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x) - 8*cos(x) + Derivative(y(x), (x, 2)),0) ics = {y(pi/2): -1, Subs(Derivative(y(x), x), x, pi/2): 1} dsolve(ode,func=y(x),ics=ics)