26.8.19 problem Exercise 21.24, page 231

Internal problem ID [7103]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 21. Undetermined Coefficients
Problem number : Exercise 21.24, page 231
Date solved : Tuesday, September 30, 2025 at 04:21:29 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right )^{2} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 20
ode:=diff(diff(y(x),x),x)+y(x) = sin(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \cos \left (x \right ) c_1 +\sin \left (x \right ) c_2 +\frac {\cos \left (x \right )^{2}}{3}+\frac {1}{3} \]
Mathematica. Time used: 0.026 (sec). Leaf size: 41
ode=D[y[x],{x,2}]+y[x]==Sin[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos (x) \int _1^x-\sin ^3(K[1])dK[1]+\frac {\sin ^4(x)}{3}+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.160 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - sin(x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} - \frac {\sin ^{2}{\left (x \right )}}{3} + \frac {2}{3} \]