26.5.3 problem Exercise 11.3, page 97

Internal problem ID [6976]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations
Problem number : Exercise 11.3, page 97
Date solved : Tuesday, September 30, 2025 at 04:07:29 PM
CAS classification : [_Bernoulli]

\begin{align*} x y^{\prime }+y&=y^{2} \ln \left (x \right ) \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 13
ode:=x*diff(y(x),x)+y(x) = y(x)^2*ln(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{1+c_1 x +\ln \left (x \right )} \]
Mathematica. Time used: 0.102 (sec). Leaf size: 20
ode=x*D[y[x],x]+y[x]==y[x]^2*Log[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{\log (x)+c_1 x+1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.144 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - y(x)**2*log(x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {1}{C_{1} x + \log {\left (x \right )} + 1} \]