23.3.242 problem 244

Internal problem ID [5956]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 244
Date solved : Friday, October 03, 2025 at 01:45:36 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.035 (sec). Leaf size: 248
ode:=(b2*x+a2)*y(x)+(b1*x+a1)*diff(y(x),x)+(b0*x+a0)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {\left (\operatorname {b1} +\sqrt {-4 \operatorname {b2} \operatorname {b0} +\operatorname {b1}^{2}}\right ) x}{2 \operatorname {b0}}} \left (\operatorname {b0} x +\operatorname {a0} \right )^{\frac {\operatorname {a0} \operatorname {b1} -\operatorname {a1} \operatorname {b0} +\operatorname {b0}^{2}}{\operatorname {b0}^{2}}} \left (\operatorname {KummerU}\left (\frac {\left (\operatorname {a0} \operatorname {b1} -\operatorname {a1} \operatorname {b0} +2 \operatorname {b0}^{2}\right ) \sqrt {-4 \operatorname {b2} \operatorname {b0} +\operatorname {b1}^{2}}-2 \operatorname {a2} \,\operatorname {b0}^{2}+\left (2 \operatorname {a0} \operatorname {b2} +\operatorname {a1} \operatorname {b1} \right ) \operatorname {b0} -\operatorname {a0} \,\operatorname {b1}^{2}}{2 \sqrt {-4 \operatorname {b2} \operatorname {b0} +\operatorname {b1}^{2}}\, \operatorname {b0}^{2}}, \frac {\operatorname {a0} \operatorname {b1} -\operatorname {a1} \operatorname {b0} +2 \operatorname {b0}^{2}}{\operatorname {b0}^{2}}, \frac {\sqrt {-4 \operatorname {b2} \operatorname {b0} +\operatorname {b1}^{2}}\, \left (\operatorname {b0} x +\operatorname {a0} \right )}{\operatorname {b0}^{2}}\right ) c_2 +\operatorname {KummerM}\left (\frac {\left (\operatorname {a0} \operatorname {b1} -\operatorname {a1} \operatorname {b0} +2 \operatorname {b0}^{2}\right ) \sqrt {-4 \operatorname {b2} \operatorname {b0} +\operatorname {b1}^{2}}-2 \operatorname {a2} \,\operatorname {b0}^{2}+\left (2 \operatorname {a0} \operatorname {b2} +\operatorname {a1} \operatorname {b1} \right ) \operatorname {b0} -\operatorname {a0} \,\operatorname {b1}^{2}}{2 \sqrt {-4 \operatorname {b2} \operatorname {b0} +\operatorname {b1}^{2}}\, \operatorname {b0}^{2}}, \frac {\operatorname {a0} \operatorname {b1} -\operatorname {a1} \operatorname {b0} +2 \operatorname {b0}^{2}}{\operatorname {b0}^{2}}, \frac {\sqrt {-4 \operatorname {b2} \operatorname {b0} +\operatorname {b1}^{2}}\, \left (\operatorname {b0} x +\operatorname {a0} \right )}{\operatorname {b0}^{2}}\right ) c_1 \right ) \]
Mathematica. Time used: 0.137 (sec). Leaf size: 307
ode=(a2 + b2*x)*y[x] + (a1 + b1*x)*D[y[x],x] + (a0 + b0*x)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-\frac {x \left (\sqrt {\text {b1}^2-4 \text {b0} \text {b2}}+\text {b1}\right )}{2 \text {b0}}} (\text {a0}+\text {b0} x)^{\frac {\text {a0} \text {b1}-\text {a1} \text {b0}+\text {b0}^2}{\text {b0}^2}} \left (c_1 \operatorname {HypergeometricU}\left (\frac {-2 \text {a2} \text {b0}^2+2 \sqrt {\text {b1}^2-4 \text {b0} \text {b2}} \text {b0}^2+2 \text {a0} \text {b2} \text {b0}+\text {a1} \left (\text {b1}-\sqrt {\text {b1}^2-4 \text {b0} \text {b2}}\right ) \text {b0}-\text {a0} \text {b1}^2+\text {a0} \text {b1} \sqrt {\text {b1}^2-4 \text {b0} \text {b2}}}{2 \text {b0}^2 \sqrt {\text {b1}^2-4 \text {b0} \text {b2}}},-\frac {\text {a1}}{\text {b0}}+\frac {\text {a0} \text {b1}}{\text {b0}^2}+2,\frac {\sqrt {\text {b1}^2-4 \text {b0} \text {b2}} (\text {a0}+\text {b0} x)}{\text {b0}^2}\right )+c_2 L_{\frac {2 \text {a2} \text {b0}^2-2 \sqrt {\text {b1}^2-4 \text {b0} \text {b2}} \text {b0}^2-2 \text {a0} \text {b2} \text {b0}+\text {a1} \left (\sqrt {\text {b1}^2-4 \text {b0} \text {b2}}-\text {b1}\right ) \text {b0}+\text {a0} \text {b1}^2-\text {a0} \text {b1} \sqrt {\text {b1}^2-4 \text {b0} \text {b2}}}{2 \text {b0}^2 \sqrt {\text {b1}^2-4 \text {b0} \text {b2}}}}^{\frac {\text {b0}^2-\text {a1} \text {b0}+\text {a0} \text {b1}}{\text {b0}^2}}\left (\frac {\sqrt {\text {b1}^2-4 \text {b0} \text {b2}} (\text {a0}+\text {b0} x)}{\text {b0}^2}\right )\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a0 = symbols("a0") 
a1 = symbols("a1") 
a2 = symbols("a2") 
b0 = symbols("b0") 
b1 = symbols("b1") 
b2 = symbols("b2") 
y = Function("y") 
ode = Eq((a0 + b0*x)*Derivative(y(x), (x, 2)) + (a1 + b1*x)*Derivative(y(x), x) + (a2 + b2*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False