4.7.9 Problems 801 to 900

Table 4.765: Solved using series method

#

ODE

Mathematica

Maple

Sympy

7197

\[ {} y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0 \]

7198

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

7199

\[ {} x \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } \left (-x^{2}+1\right )+x y = 0 \]

7200

\[ {} 4 \left (1-x \right ) x y^{\prime \prime }-4 y^{\prime }-y = 0 \]

7201

\[ {} x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

7202

\[ {} 2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

7203

\[ {} \left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2} \]

7204

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

7205

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }+x y^{\prime }-y = 0 \]

7206

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

7207

\[ {} \left (1-x \right ) x y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

7208

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }+y^{\prime }+4 y = 0 \]

7209

\[ {} 4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

7371

\[ {} x y^{\prime } = x y+y \]

7373

\[ {} y^{\prime } = 3 x^{2} y \]

7375

\[ {} x y^{\prime } = y \]

7377

\[ {} y^{\prime \prime } = -4 y \]

7379

\[ {} y^{\prime \prime } = y \]

7381

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

7383

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

7385

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0 \]

7387

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

7389

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

7633

\[ {} \left (1+x \right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \]

7634

\[ {} x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

7635

\[ {} \left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+\sin \left (x \right ) y = 0 \]

7636

\[ {} \left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0 \]

7637

\[ {} \left (t^{2}-t -2\right ) x^{\prime \prime }+\left (t +1\right ) x^{\prime }-\left (t -2\right ) x = 0 \]

7638

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \]

7639

\[ {} \sin \left (x \right ) y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

7640

\[ {} {\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0 \]

7641

\[ {} \sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \]

7642

\[ {} y^{\prime }+\left (x +2\right ) y = 0 \]

7643

\[ {} y^{\prime }-y = 0 \]

7644

\[ {} z^{\prime }-x^{2} z = 0 \]

7645

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

7646

\[ {} y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

7647

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

7648

\[ {} w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \]

7649

\[ {} \left (2 x -3\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7650

\[ {} \left (1+x \right ) y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

7651

\[ {} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

7652

\[ {} \left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \]

7653

\[ {} \left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

7654

\[ {} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y = 0 \]

7655

\[ {} \left (x^{3}+1\right ) y^{\prime \prime }-x y^{\prime }+2 x^{2} y = 0 \]

7656

\[ {} y^{\prime }+2 \left (x -1\right ) y = 0 \]

7657

\[ {} y^{\prime }-2 x y = 0 \]

7658

\[ {} \left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \]

7659

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

7660

\[ {} x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \]

7661

\[ {} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \]

7662

\[ {} x^{\prime }+x \sin \left (t \right ) = 0 \]

7663

\[ {} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

7664

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \]

7665

\[ {} y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]

7666

\[ {} y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+y \cos \left (x \right ) = 0 \]

7667

\[ {} y^{\prime }-x y = \sin \left (x \right ) \]

7668

\[ {} w^{\prime }+w x = {\mathrm e}^{x} \]

7669

\[ {} z^{\prime \prime }+x z^{\prime }+z = x^{2}+2 x +1 \]

7670

\[ {} y^{\prime \prime }-2 x y^{\prime }+3 y = x^{2} \]

7671

\[ {} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = \cos \left (x \right ) \]

7672

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = \cos \left (x \right ) \]

7673

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right ) \]

7674

\[ {} y^{\prime \prime }-\sin \left (x \right ) y = \cos \left (x \right ) \]

7675

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

7846

\[ {} \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+x y = 0 \]

7847

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

7848

\[ {} y^{\prime \prime }+x y = 0 \]

7849

\[ {} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

7850

\[ {} y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

7851

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-y = 0 \]

7852

\[ {} y^{\prime \prime }+2 x^{2} y = 0 \]

7853

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

7854

\[ {} y^{\prime \prime }-x y = 0 \]

7855

\[ {} y^{\prime \prime }-2 x y^{\prime }+x^{2} y = 0 \]

8078

\[ {} \left (1-x \right ) y^{\prime } = -y+x^{2} \]

8079

\[ {} x y^{\prime } = 1-x +2 y \]

8081

\[ {} y^{\prime } = 2 x^{2}+3 y \]

8082

\[ {} y^{\prime } \left (1+x \right ) = x^{2}-2 x +y \]

8083

\[ {} y^{\prime \prime }+x y = 0 \]

8084

\[ {} y^{\prime \prime }+2 x^{2} y = 0 \]

8085

\[ {} y^{\prime \prime }-x y^{\prime }+x^{2} y = 0 \]

8086

\[ {} p \left (p +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

8087

\[ {} y^{\prime \prime }+x^{2} y = x^{2}+x +1 \]

8088

\[ {} 2 \left (x^{3}+x^{2}\right ) y^{\prime \prime }-\left (-3 x^{2}+x \right ) y^{\prime }+y = 0 \]

8089

\[ {} 4 x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }-y = 0 \]

8090

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

8091

\[ {} x y^{\prime \prime }+y^{\prime }+x y = 0 \]

8092

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

8093

\[ {} x y^{\prime \prime }-2 y^{\prime }+y = 0 \]

8094

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

8095

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

8096

\[ {} 2 x y^{\prime \prime }+y^{\prime }-y = 1+x \]

8097

\[ {} 2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

8098

\[ {} x^{3} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

8099

\[ {} z^{\prime \prime }+t z^{\prime }+\left (t^{2}-\frac {1}{9}\right ) z = 0 \]

8100

\[ {} x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (y+\left (1-x \right ) y^{\prime }\right ) = 0 \]

8101

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }-\left (2 x +1\right ) \left (x y^{\prime }-y\right ) = 0 \]

8102

\[ {} x^{3} \left (1+x \right ) y^{\prime \prime \prime }-\left (4 x +2\right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \]