4.6.8 Problems 701 to 800

Table 4.739: Second order non-linear ODE

#

ODE

Mathematica

Maple

Sympy

13047

\[ {} y+3 x y^{\prime }+2 {y^{\prime }}^{3} y+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0 \]

13048

\[ {} y^{3}+\left ({y^{\prime }}^{2}+y^{2}\right ) y^{\prime \prime } = 0 \]

13049

\[ {} \left ({y^{\prime }}^{2}+a \left (x y^{\prime }-y\right )\right ) y^{\prime \prime }-b = 0 \]

13050

\[ {} \left (a \sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }\right ) y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

13051

\[ {} {y^{\prime \prime }}^{2}-a y-b = 0 \]

13052

\[ {} a^{2} {y^{\prime \prime }}^{2}-2 a x y^{\prime \prime }+y^{\prime } = 0 \]

13053

\[ {} 2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}-x \left (x +4 y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y^{\prime }\right ) y^{\prime }-2 y = 0 \]

13054

\[ {} 4 {y^{\prime }}^{2}-2 \left (3 x y^{\prime }+y\right ) y^{\prime \prime }+3 x^{2} {y^{\prime \prime }}^{2} = 0 \]

13055

\[ {} \left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+6 y y^{\prime \prime }-36 x {y^{\prime }}^{2} = 0 \]

13056

\[ {} y {y^{\prime \prime }}^{2}-a \,{\mathrm e}^{2 x} = 0 \]

13057

\[ {} \left (a^{2} y^{2}-b^{2}\right ) {y^{\prime \prime }}^{2}-2 a^{2} y {y^{\prime }}^{2} y^{\prime \prime }+\left (a^{2} {y^{\prime }}^{2}-1\right ) {y^{\prime }}^{2} = 0 \]

13058

\[ {} \left (y^{2}-x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }\right )^{2}-4 x y \left (x y^{\prime }-y\right )^{3} = 0 \]

13059

\[ {} 32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3}+\left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3} = 0 \]

13060

\[ {} \sqrt {a {y^{\prime \prime }}^{2}+b {y^{\prime }}^{2}}+c y y^{\prime \prime }+d {y^{\prime }}^{2} = 0 \]

13077

\[ {} y^{\prime \prime }-f \left (y\right ) = 0 \]

13527

\[ {} y^{\prime } = y^{2}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )} \]

13617

\[ {} y y^{\prime }-y = a^{2} f^{\prime }\left (x \right ) f^{\prime \prime }\left (x \right )-\frac {\left (f \left (x \right )+b \right )^{2} f^{\prime \prime }\left (x \right )}{{f^{\prime }\left (x \right )}^{3}} \]

14269

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

14273

\[ {} \left (y^{\prime }-x y^{\prime \prime }\right )^{2} = 1+{y^{\prime \prime }}^{2} \]

14274

\[ {} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

14275

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

14276

\[ {} 2 y^{\prime \prime } = {\mathrm e}^{y} \]

14277

\[ {} y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2} = 0 \]

14288

\[ {} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

14289

\[ {} \left (x y^{\prime }-y\right )^{2}+x^{2} y y^{\prime \prime } = 0 \]

14290

\[ {} x^{3} y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0 \]

14291

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = \ln \left (y\right ) y^{2}-x^{2} y^{2} \]

14293

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

14295

\[ {} y y^{\prime }+y^{\prime \prime } = 0 \]

14298

\[ {} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0 \]

14300

\[ {} x^{2}+2 y+4 \left (x +y\right ) y^{\prime }+2 x {y^{\prime }}^{2}+x \left (2 y+x \right ) y^{\prime \prime } = 0 \]

14301

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

14979

\[ {} x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x = 0 \]

14980

\[ {} x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x = 0 \]

14981

\[ {} x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x = 0 \]

14982

\[ {} x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0 \]

14983

\[ {} x^{\prime \prime }+\left (1+x^{2}\right ) x^{\prime }+x^{3} = 0 \]

15187

\[ {} y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

15189

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

15190

\[ {} x^{3} x^{\prime \prime }+1 = 0 \]

15197

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

15198

\[ {} y^{\prime \prime } = 3 \sqrt {y} \]

15201

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

15202

\[ {} y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

15208

\[ {} m x^{\prime \prime } = f \left (x\right ) \]

15209

\[ {} m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

15217

\[ {} -y y^{\prime }-x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

15221

\[ {} x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

15223

\[ {} y^{\prime \prime } = 2 y^{3} \]

15224

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

15241

\[ {} y y^{\prime }+y^{\prime \prime } = 1 \]

15258

\[ {} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

15259

\[ {} y y^{\prime \prime } = 1 \]

15273

\[ {} y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

15286

\[ {} x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

15287

\[ {} \frac {x y^{\prime \prime }}{1+y}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (1+y\right )^{2}} = x \sin \left (x \right ) \]

15288

\[ {} \left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = \sin \left (x \right ) y \]

15289

\[ {} y y^{\prime \prime } \sin \left (x \right )+\left (y^{\prime } \sin \left (x \right )+y \cos \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

15290

\[ {} \left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

15291

\[ {} \left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

15513

\[ {} y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

15516

\[ {} y^{\prime \prime } = \frac {a}{y^{3}} \]

15518

\[ {} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

15520

\[ {} {y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]

15521

\[ {} y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]

15562

\[ {} y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

15591

\[ {} x^{\prime \prime }+x-x^{3} = 0 \]

15592

\[ {} x^{\prime \prime }+x+x^{3} = 0 \]

15593

\[ {} x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \]

15594

\[ {} x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \]

15595

\[ {} x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \]

15776

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

16273

\[ {} y^{2} y^{\prime \prime } = 8 x^{2} \]

16502

\[ {} y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

16503

\[ {} y^{\prime } y^{\prime \prime } = 1 \]

16504

\[ {} y y^{\prime \prime } = -{y^{\prime }}^{2} \]

16505

\[ {} x y^{\prime \prime } = -y^{\prime }+{y^{\prime }}^{2} \]

16506

\[ {} x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

16507

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

16509

\[ {} \left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16515

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

16516

\[ {} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16517

\[ {} \sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

16519

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime } \]

16520

\[ {} y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

16521

\[ {} y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

16522

\[ {} y^{\prime } y^{\prime \prime } = 1 \]

16523

\[ {} x y^{\prime \prime } = -y^{\prime }+{y^{\prime }}^{2} \]

16525

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

16526

\[ {} y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16527

\[ {} \left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

16529

\[ {} y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

16537

\[ {} 2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

16538

\[ {} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16539

\[ {} y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]

16540

\[ {} y^{\prime \prime } = -{\mathrm e}^{-y} y^{\prime } \]

16541

\[ {} y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

16542

\[ {} y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

16543

\[ {} y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

16544

\[ {} y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]