| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\sin \left (y\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\sin \left (y\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime } = x \left (1+x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\sin \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = x {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 2 {y^{\prime }}^{3} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = x {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = x {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = -{\mathrm e}^{-2 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = -{\mathrm e}^{-2 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime } = \left (3 x -2 y^{\prime }\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime }-x y^{\prime \prime }+{y^{\prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y {y^{\prime }}^{2} y^{\prime \prime } = 3+{y^{\prime }}^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2} y^{\prime \prime } = x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime \prime } = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 y y^{\prime \prime }+y = 5
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a y y^{\prime \prime }+b y = c
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a y^{2} y^{\prime \prime }+b y^{2} = c
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y y^{\prime } = 2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} \sin \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = A y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+{\mathrm e}^{y} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}+y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}+y^{\prime } = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}+y^{\prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2}+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y {y^{\prime \prime }}^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime }+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime }+y^{n} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|