Internal
problem
ID
[5543]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
193
Date
solved
:
Tuesday, September 30, 2025 at 12:51:49 PM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=x^8*diff(y(x),x)^2+3*x*diff(y(x),x)+9*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^8 (D[y[x],x])^2+3 x D[y[x],x]+9 y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**8*Derivative(y(x), x)**2 + 3*x*Derivative(y(x), x) + 9*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)