Internal
problem
ID
[5541]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
191
Date
solved
:
Tuesday, September 30, 2025 at 12:51:47 PM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=4*x^5*diff(y(x),x)^2+12*x^4*y(x)*diff(y(x),x)+9 = 0; dsolve(ode,y(x), singsol=all);
ode=4 x^5 (D[y[x],x])^2+12 x^4 y[x] D[y[x],x]+9==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**5*Derivative(y(x), x)**2 + 12*x**4*y(x)*Derivative(y(x), x) + 9,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out