23.2.186 problem 191

Internal problem ID [5541]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 191
Date solved : Tuesday, September 30, 2025 at 12:51:47 PM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \end{align*}
Maple. Time used: 0.269 (sec). Leaf size: 53
ode:=4*x^5*diff(y(x),x)^2+12*x^4*y(x)*diff(y(x),x)+9 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1}{x^{{3}/{2}}} \\ y &= -\frac {1}{x^{{3}/{2}}} \\ y &= \frac {c_1^{2} x^{3}+1}{2 c_1 \,x^{3}} \\ y &= \frac {x^{3}+c_1^{2}}{2 c_1 \,x^{3}} \\ \end{align*}
Mathematica. Time used: 3.918 (sec). Leaf size: 75
ode=4 x^5 (D[y[x],x])^2+12 x^4 y[x] D[y[x],x]+9==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{\sqrt {x^3 \text {sech}^2\left (\frac {3}{2} (-\log (x)+c_1)\right )}}\\ y(x)&\to \frac {1}{\sqrt {x^3 \text {sech}^2\left (\frac {3}{2} (-\log (x)+c_1)\right )}}\\ y(x)&\to -\frac {1}{x^{3/2}}\\ y(x)&\to \frac {1}{x^{3/2}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**5*Derivative(y(x), x)**2 + 12*x**4*y(x)*Derivative(y(x), x) + 9,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out