23.2.182 problem 187

Internal problem ID [5537]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 187
Date solved : Tuesday, September 30, 2025 at 12:51:43 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4&=0 \end{align*}
Maple. Time used: 0.030 (sec). Leaf size: 49
ode:=x^4*diff(y(x),x)^2+2*x^3*y(x)*diff(y(x),x)-4 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2 i}{x} \\ y &= \frac {2 i}{x} \\ y &= \frac {2 \sinh \left (-\ln \left (x \right )+c_1 \right )}{x} \\ y &= -\frac {2 \sinh \left (-\ln \left (x \right )+c_1 \right )}{x} \\ \end{align*}
Mathematica. Time used: 0.744 (sec). Leaf size: 71
ode=x^4 (D[y[x],x])^2+2 x^3 y[x] D[y[x],x]-4==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {4 e^{c_1}}{x^2}-\frac {e^{-c_1}}{4}\\ y(x)&\to \frac {e^{-c_1}}{4}-\frac {4 e^{c_1}}{x^2}\\ y(x)&\to -\frac {2 i}{x}\\ y(x)&\to \frac {2 i}{x} \end{align*}
Sympy. Time used: 4.952 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4*Derivative(y(x), x)**2 + 2*x**3*y(x)*Derivative(y(x), x) - 4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {2 \sinh {\left (C_{1} + \log {\left (x \right )} \right )}}{x}, \ y{\left (x \right )} = \frac {2 \sinh {\left (C_{1} + \log {\left (x \right )} \right )}}{x}\right ] \]