Internal
problem
ID
[5534]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
184
Date
solved
:
Sunday, October 12, 2025 at 01:25:16 AM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=x*(-x^2+1)*diff(y(x),x)^2-2*(-x^2+1)*y(x)*diff(y(x),x)+x*(1-y(x)^2) = 0; dsolve(ode,y(x), singsol=all);
ode=x*(1-x^2)*(D[y[x],x])^2-2*(1-x^2)*y[x]*D[y[x],x]+x*(1-y[x]^2)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(1 - x**2)*Derivative(y(x), x)**2 + x*(1 - y(x)**2) - (2 - 2*x**2)*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out