Internal
problem
ID
[5518]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
166
Date
solved
:
Tuesday, September 30, 2025 at 12:50:23 PM
CAS
classification
:
[_quadrature]
ode:=x^2*diff(y(x),x)^2+(a+b*x^2*y(x)^3)*diff(y(x),x)+a*b*y(x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 (D[y[x],x])^2+(a+b x^2 y[x]^3)D[y[x],x]+a b y[x]^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(a*b*y(x)**3 + x**2*Derivative(y(x), x)**2 + (a + b*x**2*y(x)**3)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)