23.1.298 problem 288

Internal problem ID [4905]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 288
Date solved : Tuesday, September 30, 2025 at 08:56:09 AM
CAS classification : [_linear]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+x^{2}+x y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 53
ode:=(-x^2+1)*diff(y(x),x)+x^2+x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (x^{2}-1\right ) \ln \left (x +\sqrt {x^{2}-1}\right )-\sqrt {x^{2}-1}\, \left (-\sqrt {x -1}\, \sqrt {x +1}\, c_1 +x \right )}{\sqrt {x^{2}-1}} \]
Mathematica. Time used: 0.024 (sec). Leaf size: 43
ode=(1-x^2)*D[y[x],x]+x^2 +x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sqrt {x^2-1} \text {arctanh}\left (\frac {x}{\sqrt {x^2-1}}\right )+c_1 \sqrt {x^2-1}-x \end{align*}
Sympy. Time used: 0.298 (sec). Leaf size: 99
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 + x*y(x) + (1 - x**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} x^{2}}{\sqrt {x^{2} - 1}} - \frac {C_{1}}{\sqrt {x^{2} - 1}} + \frac {x^{2} \log {\left (x + \sqrt {x^{2} - 1} \right )}}{\sqrt {x^{2} - 1}} + \frac {x^{2} \log {\left (2 \right )}}{\sqrt {x^{2} - 1}} - x - \frac {\log {\left (x + \sqrt {x^{2} - 1} \right )}}{\sqrt {x^{2} - 1}} - \frac {\log {\left (2 \right )}}{\sqrt {x^{2} - 1}} \]