| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }-3 y = \operatorname {Heaviside}\left (t -4\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = 9 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }-5 y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-3 x = \sin \left (y \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y = \sin \left (y^{\prime \prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }-10 y = 6 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime } = -9 s
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 2 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime } = t^{2}-4 t +8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 12 x \left (4-x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 1-\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \sqrt {2 x +1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y = 4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\lambda y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x {y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-3 y^{\prime } = 4 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime } = t^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime } = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (1+y\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = -\frac {4}{y^{3}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = y^{\prime }+2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} u^{\prime \prime }+\frac {u^{\prime }}{r} = 4-4 r
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime }+b s^{\prime }+\omega ^{2} s = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }-y = 1
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (1-x \right ) y^{\prime }-x y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime }-4 i^{\prime }+2 i = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\left (m_{1} +m_{2} \right ) y^{\prime }+m_{1} m_{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 16 y^{\prime \prime }-8 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 i^{\prime \prime }-12 i^{\prime }+9 i = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime }+16 s^{\prime }+64 s = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-8 y^{\prime }+7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+16 u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime }+2 i^{\prime }+5 i = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|