Internal
problem
ID
[4231]
Book
:
Advanced
Mathematica,
Book2,
Perkin
and
Perkin,
1992
Section
:
Chapter
11.3,
page
316
Problem
number
:
19
Date
solved
:
Tuesday, September 30, 2025 at 07:07:56 AM
CAS
classification
:
[_separable]
With initial conditions
ode:=x*diff(y(x),x) = 2*y(x)*(y(x)-1); ic:=[y(1/2) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x*D[y[x],x]==2*y[x]*(y[x]-1); ic=y[1/2]==2; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - (2*y(x) - 2)*y(x),0) ics = {y(1/2): 2} dsolve(ode,func=y(x),ics=ics)