Internal
problem
ID
[4109]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
2.
First
order
equations.
Exercises
at
page
14
Problem
number
:
2(i)
Date
solved
:
Tuesday, September 30, 2025 at 07:03:01 AM
CAS
classification
:
[_linear]
With initial conditions
ode:=x*diff(y(x),x)+2*y(x) = (3*x+2)*exp(3*x); ic:=[y(1) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x*D[y[x],x]+2*y[x]==(3*x+2)*Exp[3*x]; ic=y[1]==1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - (3*x + 2)*exp(3*x) + 2*y(x),0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)