4.2.59 Problems 5801 to 5900

Table 4.323: Second order linear ODE

#

ODE

Mathematica

Maple

Sympy

18951

\[ {} y^{\prime \prime }+y = t \left (1+\sin \left (t \right )\right ) \]

18952

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right ) \]

18953

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \]

18954

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 2 t^{2}+4 t \,{\mathrm e}^{2 t}+t \sin \left (2 t \right ) \]

18955

\[ {} y^{\prime \prime }+4 y = t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \]

18956

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t} \]

18957

\[ {} y^{\prime \prime }-3 y^{\prime }-4 y = 2 \,{\mathrm e}^{-t} \]

18958

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \ln \left (x \right ) \]

18959

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x \]

18960

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 x^{2}+2 \ln \left (x \right ) \]

18961

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right ) \]

18962

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{\pi -t} & \pi <t \end {array}\right . \]

18963

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]

18964

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

18965

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 2 \cos \left (w t \right ) \]

18966

\[ {} y^{\prime \prime }+y = 2 \cos \left (w t \right ) \]

18967

\[ {} y^{\prime \prime }+y = 3 \cos \left (w t \right ) \]

18968

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (\frac {t}{4}\right ) \]

18969

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (2 t \right ) \]

18970

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (6 t \right ) \]

18973

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

18974

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

18975

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

18976

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

18977

\[ {} y^{\prime \prime }+y = \tan \left (t \right ) \]

18978

\[ {} y^{\prime \prime }+4 y = 3 \sec \left (2 t \right )^{2} \]

18979

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

18980

\[ {} y^{\prime \prime }+4 y = 2 \csc \left (\frac {t}{2}\right ) \]

18981

\[ {} 4 y^{\prime \prime }+y = 2 \sec \left (2 t \right ) \]

18982

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

18983

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

18984

\[ {} y^{\prime \prime }+4 y = g \left (t \right ) \]

18985

\[ {} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

18986

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \]

18987

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

18988

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

18989

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = g \left (x \right ) \]

18990

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

18991

\[ {} t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

18992

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

18993

\[ {} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

18994

\[ {} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

18995

\[ {} y^{\prime \prime }+y = g \left (t \right ) \]

18996

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \]

18997

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

18998

\[ {} y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

18999

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

19000

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

19001

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

19002

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = t^{2} {\mathrm e}^{t}+7 \]

19003

\[ {} y^{\prime \prime }-5 y^{\prime }-6 y = t^{2}+7 \]

19004

\[ {} y^{\prime \prime }+4 y = 3 \,{\mathrm e}^{-2 t} \sin \left (2 t \right ) \]

19005

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = t \cos \left (2 t \right ) \]

19008

\[ {} y^{\prime \prime }+16 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

19009

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

19010

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]

19011

\[ {} y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

19012

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = t \]

19013

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

19014

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

19015

\[ {} y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

19016

\[ {} y^{\prime \prime }+4 y^{\prime }+29 y = {\mathrm e}^{-2 t} \sin \left (5 t \right ) \]

19017

\[ {} y^{\prime \prime }+w^{2} y = \cos \left (2 t \right ) \]

19018

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = \cos \left (t \right ) \]

19019

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]

19020

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 18 \,{\mathrm e}^{-t} \]

19035

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]

19036

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \]

19037

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]

19038

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right )-\sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]

19039

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \]

19040

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \operatorname {Heaviside}\left (t -2\right ) \]

19041

\[ {} y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -3 \pi \right ) \]

19042

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]

19043

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \]

19044

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

19045

\[ {} y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]

19048

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2} \]

19049

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \]

19050

\[ {} u^{\prime \prime }+\frac {u^{\prime }}{4}+u = 2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \]

19051

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]

19052

\[ {} y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

19053

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \]

19054

\[ {} y^{\prime \prime }-y = -20 \delta \left (t -3\right ) \]

19055

\[ {} y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]

19056

\[ {} y^{\prime \prime }+4 y = \delta \left (t -4 \pi \right ) \]

19057

\[ {} y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]

19058

\[ {} y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]

19059

\[ {} y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]

19060

\[ {} 2 y^{\prime \prime }+y^{\prime }+6 y = \delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \]

19061

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]

19063

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]

19064

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]

19065

\[ {} y^{\prime \prime }+y = \delta \left (t -1\right ) \]

19066

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y = k \delta \left (t -1\right ) \]

19067

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{10}+y = k \delta \left (t -1\right ) \]

19068

\[ {} y^{\prime \prime }+w^{2} y = g \left (t \right ) \]

19069

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = \sin \left (\alpha t \right ) \]

19070

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+17 y = g \left (t \right ) \]

19071

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]