Internal
problem
ID
[3691]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.9,
Exact
Differential
Equations.
page
91
Problem
number
:
Problem
8
Date
solved
:
Tuesday, September 30, 2025 at 06:56:04 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _Riccati]
ode:=1/x-y(x)/(x^2+y(x)^2)+x/(x^2+y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1/x-y[x]/(x^2+y[x]^2))+x/(x^2+y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x)/(x**2 + y(x)**2) - y(x)/(x**2 + y(x)**2) + 1/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)