Internal
problem
ID
[1829]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
25
Date
solved
:
Tuesday, September 30, 2025 at 05:20:10 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-x*(x+4)*diff(y(x),x)+2*(x+3)*y(x) = x^4*exp(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-x*(x+4)*D[y[x],x]+2*(x+3)*y[x]==x^4*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**4*exp(x) + x**2*Derivative(y(x), (x, 2)) - x*(x + 4)*Derivative(y(x), x) + (2*x + 6)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**4*exp(x) + x**2*Derivative(y(x), (x, 2)) + 2*x*y(x) + 6*y(x))/(x*(x + 4)) cannot be solved by the factorable group method