Internal
problem
ID
[1499]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
11th
ed.,
Boyce,
DiPrima,
Meade
Section
:
Chapter
6.4,
The
Laplace
Transform.
Differential
equations
with
discontinuous
forcing
functions.
page
268
Problem
number
:
5
Date
solved
:
Tuesday, September 30, 2025 at 04:34:44 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+diff(y(t),t)+5/4*y(t) = t-Heaviside(t-1/2*Pi)*(t-1/2*Pi); ic:=[y(0) = 0, D(y)(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+D[y[t],t]+5/4*y[t]==t-UnitStep[t-Pi/2]*(t-Pi/2); ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t + (t - pi/2)*Heaviside(t - pi/2) + 5*y(t)/4 + Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)