4.19.3 problem 3

Internal problem ID [1444]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number : 3
Date solved : Tuesday, September 30, 2025 at 04:34:11 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=2 x_{1} \left (t \right )-x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=3 x_{1} \left (t \right )-2 x_{2} \left (t \right ) \end{align*}
Maple. Time used: 0.113 (sec). Leaf size: 30
ode:=[diff(x__1(t),t) = 2*x__1(t)-x__2(t), diff(x__2(t),t) = 3*x__1(t)-2*x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{t}+c_2 \,{\mathrm e}^{-t} \\ x_{2} \left (t \right ) &= c_1 \,{\mathrm e}^{t}+3 c_2 \,{\mathrm e}^{-t} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 73
ode={D[ x1[t],t]==2*x1[t]-1*x2[t],D[ x2[t],t]==3*x1[t]-2*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)&\to \frac {1}{2} e^{-t} \left (c_1 \left (3 e^{2 t}-1\right )-c_2 \left (e^{2 t}-1\right )\right )\\ \text {x2}(t)&\to \frac {1}{2} e^{-t} \left (3 c_1 \left (e^{2 t}-1\right )-c_2 \left (e^{2 t}-3\right )\right ) \end{align*}
Sympy. Time used: 0.045 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-2*x__1(t) + x__2(t) + Derivative(x__1(t), t),0),Eq(-3*x__1(t) + 2*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = \frac {C_{1} e^{- t}}{3} + C_{2} e^{t}, \ x^{2}{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{t}\right ] \]