90.24.10 problem 10

Internal problem ID [25375]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 5. Second Order Linear Differential Equations. Exercises at page 371
Problem number : 10
Date solved : Friday, October 03, 2025 at 12:00:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{-t} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=t*diff(diff(y(t),t),t)+(t-1)*diff(y(t),t)-y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_1 \left (t -1\right )+c_2 \,{\mathrm e}^{-t} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 20
ode=t*D[y[t],{t,2}]+(t-1)*D[y[t],t]-y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to c_1 e^{-t}+c_2 (t-1) \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), (t, 2)) + (t - 1)*Derivative(y(t), t) - y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
False