Internal
problem
ID
[25286]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
4.
Linear
Constant
Coefficient
Differential
Equations.
Exercises
at
page
309
Problem
number
:
4
Date
solved
:
Sunday, October 12, 2025 at 05:55:37 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t)-2*y__1(t) = 2*y__2(t), diff(diff(y__2(t),t),t)+2*diff(y__2(t),t)+y__2(t) = -2*y__1(t)]; ic:=[y__1(0) = 3, y__2(0) = 0, D(y__2)(0) = 3]; dsolve([ode,op(ic)]);
ode={D[y1[t],t]-2*y1[t]==2*y2[t], D[y2[t],{t,2}]+2*D[y2[t],t]+y2[t]==-2*y1[t]}; ic={y1[0]==3,y2[0]==0,Derivative[1][y2][0] ==3}; DSolve[{ode,ic},{y1[t],y2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y1 = Function("y1") y2 = Function("y2") ode=[Eq(-2*y1(t) - 2*y2(t) + Derivative(y1(t), t),0),Eq(2*y1(t) + y2(t) + 2*Derivative(y2(t), t) + Derivative(y2(t), (t, 2)),0)] ics = {y1(0): 3, y2(0): 0, Subs(Derivative(y2(t), t), t, 0): 3} dsolve(ode,func=[y1(t),y2(t)],ics=ics)