Internal
problem
ID
[25283]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
4.
Linear
Constant
Coefficient
Differential
Equations.
Exercises
at
page
309
Problem
number
:
1
Date
solved
:
Thursday, October 02, 2025 at 11:59:34 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t)-6*y__1(t) = -4*y__2(t), diff(y__2(t),t) = 2*y__1(t)]; ic:=[y__1(0) = 2, y__2(0) = -1]; dsolve([ode,op(ic)]);
ode={D[y1[t],t]-6*y1[t]==-4*y2[t], D[y2[t],t]==2*y1[t]}; ic={y1[0]==2,y2[0]==-1}; DSolve[{ode,ic},{y1[t],y2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y1 = Function("y1") y2 = Function("y2") ode=[Eq(-6*y1(t) + 4*y2(t) + Derivative(y1(t), t),0),Eq(-2*y1(t) + Derivative(y2(t), t),0)] ics = {y1(0): 2, y2(0): -1} dsolve(ode,func=[y1(t),y2(t)],ics=ics)