90.13.12 problem 12

Internal problem ID [25224]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 3. Second Order Constant Coefficient Linear Differential Equations. Exercises at page 235
Problem number : 12
Date solved : Thursday, October 02, 2025 at 11:59:05 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }-21 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(diff(y(t),t),t)-4*diff(y(t),t)-21*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{7 t}+c_2 \,{\mathrm e}^{-3 t} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 22
ode=D[y[t],{t,2}]-4*D[y[t],t]-21*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to c_1 e^{-3 t}+c_2 e^{7 t} \end{align*}
Sympy. Time used: 0.086 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-21*y(t) - 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} e^{- 3 t} + C_{2} e^{7 t} \]