90.7.7 problem 7

Internal problem ID [25161]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 1. First order differential equations. Exercises at page 99
Problem number : 7
Date solved : Thursday, October 02, 2025 at 11:55:34 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=t +y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.101 (sec). Leaf size: 35
ode:=diff(y(t),t) = t+y(t)^2; 
ic:=[y(0) = 0]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = \frac {\sqrt {3}\, \operatorname {AiryAi}\left (1, -t \right )+\operatorname {AiryBi}\left (1, -t \right )}{\sqrt {3}\, \operatorname {AiryAi}\left (-t \right )+\operatorname {AiryBi}\left (-t \right )} \]
Mathematica. Time used: 0.725 (sec). Leaf size: 80
ode=D[y[t],t]== t+y[t]^2; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\frac {t^{3/2} \operatorname {BesselJ}\left (-\frac {4}{3},\frac {2 t^{3/2}}{3}\right )-t^{3/2} \operatorname {BesselJ}\left (\frac {2}{3},\frac {2 t^{3/2}}{3}\right )+\operatorname {BesselJ}\left (-\frac {1}{3},\frac {2 t^{3/2}}{3}\right )}{2 t \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2 t^{3/2}}{3}\right )} \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t - y(t)**2 + Derivative(y(t), t),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
TypeError : bad operand type for unary -: list